I have a laravel project which I am using with docker. Currently I am using a single container to host all the services (apache, mySQL etc) as well as the needed dependencies (project files, git, composer etc) I need for my project.
From what I am reading the current best practice is to put each service into a separate container. So far this seems simple enough since these services are designed to run at length (apache server, mySQL server). When I spin up these 'service' containers using -d they remain running (docker ps) since their main process continuously runs.
However, when I remove all the services from my project container, then there is no main process left to continuously run. This means my container immediately exits once spun up.
I have read the 'hacks' of running other processes like tail -f /dev/null, sleep infinity, using interactive mode, installing supervisord (which I assume would end up watching no processes in such containers?) and even leaving the container to run in the foreground (taking up a terminal console...).
How do I network such a container to keep it running like the abstracted services but detached without these hacks? I cannot seem to find much information on this in the official docker docs nor can I find any examples of other projects (please link any)
EDIT: I am not talking about volumes / storage containers to store the data my project processes, but rather how I can use a container to store the project itself and its dependencies that aren't services (project files, git, composer)
when you run the container try running with the flags ...
docker run -dt ..... etc
you might even try .....
docker run -dti ..... etc
let me know if this brings any joy. has certainly worked for me on occassions.
i know you wanted to avoid hacks but if the above fails then also add ...
CMD cat
to the end of your Dockerfile - it is a hack but is the cleanest hack :)
So after reading this a few times along with Joachim Isaksson's comment, I finally get it. Tools don't need the containers to run continuously to use. Proper separation of the project files, services (mySQL, apache) and tools (git, composer) are done differently.
The project files are persisted within a data volume container. The services are networked since they expose ports. The tools live in their own containers which share the project files data volume - they are not networked. Logs, databases and other output can be persisted in different volumes.
When you wish to run one of these tools, you spin up the tool container by passing the relevant command using docker run. The tool then manipulates the data within the directory persisted within the shared volume. The containers only persist as long as the command to manipulate the data within the shared volume takes to run and then the container stops.
I don't know why this took me so long to grasp, but this is the aha moment for me.
Do I need use separate Docker container for my complex web application or I can put all required services in one container?
Could anyone explain me why I should divide my app to many containers (for example php-fpm container, mysql container, mongo container) when I have ability to install and launch all stuff in one container?
Something to think about when working with Docker is how it works inside. Docker replaces your PID 1 with the command you specify in the CMD (and ENTRYPOINT, which is slightly more complex) directive in your Dockerfile. PID 1 is normally where your init system lives (sysvinit, runit, systemd, whatever). Your container lives and dies by whatever process is started there. When the process dies, your container dies. Stdout and stderr for that process in the container is what you are given on the host machine when you type docker logs myContainer. Incidentally, this is why you need to jump through hoops to start services and run cronjobs (things normally done by your init system). This is very important in understanding the motivation for doing things a certain way.
Now, you can do whatever you want. There are many opinions about the "right" way to do this, but you can throw all that away and do what you want. So you COULD figure out how to run all of those services in one container. But now that you know how docker replaces PID 1 with whatever command you specify in CMD (and ENTRYPOINT) in your Dockerfiles, you might think it prudent to try and keep your apps running each in their own containers, and let them work with each other via container linking. (Update -- 27 April 2017: Container linking has been deprecated in favor of regular ole container networking, which is much more robust, the idea being that you simply join your separate application containers to the same network so they can talk to one another).
If you want a little help deciding, I can tell you from my own experience that it ends up being much cleaner and easier to maintain when you separate your apps into individual containers and then link them together. Just now I am building a Wordpress installation from HHVM, and I am installing Nginx and HHVM/php-fpm with the Wordpress installation in one container, and the MariaDB stuff in another container. In the future, this will let me drop in a replacement Wordpress installation directly in front of my MariaDB data with almost no hassle. It is worth it to containerize per app. Good luck!
When you divide your web application to many containers, you don't need to restart all the services when you deploy your application. Like traditionally you don't restart your mysql server when you update your web layer.
Also if you want to scale your application, it is easier if your application is divided separate containers. Then you can just scale those parts of your application that are needed to solve your bottlenecks.
Some will tell you that you should run only 1 process per container. Others will say 1 application per container. Those advices are based on principles of microservices.
I don't believe microservices is the right solution for all cases, so I would not follow those advices blindly just for that reason. If it makes sense to have multiples processes in one container for your case, then do so. (See Supervisor and Phusion baseimage for that matter)
But there is also another reason to separate containers: In most cases, it is less work for you to do.
On the Docker Hub, there are plenty of ready to use Docker images. Just pull the ones you need.
What's remaining for you to do is then:
read the doc for those docker images (what environnement variable to set, etc)
create a docker-compose.yml file to ease operating those containers
It is probably better to have your webapp in a single container and your supporting services like databases etc. in a separate containers. By doing this if you need to do rolling updates or restarts you can keep your database online while your application nodes are doing individual restarts so you wont experience downtime. If you have caching with something like Redis etc this is also useful for the same reason. It will also allow you to more easily add nodes to scale in a loosely coupled fashion. It will also allow you to manage the containers in a manner more suitable to a specific purpose. For the type of application you are describing I see very few arguments for running all services on a single container.
It depends on the vision and road map you have for your application. Putting all components of an application in one tier in this case docker container is like putting all eggs in one basket.
Whenever your application would require security, performance related issues then separating those three components in their own containers would be an ideal solution. It's needless to mention that this division of labor across containers would come at some cost and which would be related to wiring up those containers together for communication and security etc.
I sometimes use Docker for my development work. When I do, I usually work on an out-of-the-box LAMP image from tutum.
My question is: Doesn't it defeat the purpose to work with Docker if it runs multiple processes in one container? (like the container started off Tutum's LAMP image) Isn't the whole idea of Docker to separate each process into a separate container?
While it is generally a good rule of thumb to separate processes into separate containers, that's not the main benefit/purpose of docker. The benefit of docker is immutability. And if throwing two processes into a single container makes for cleaner logic then go for it. Though in this case, I would definitely consider at least stripping out the DB into its own container, and talk to it through a docker link. The database shouldn't have to go down every time you rebuild your image.
Generally sometimes it is neccessary or more useful to use one container for more than one process like in this situation.
Such situation happens when processes are used together to fulfill its task. I can imagine for example situation when somebody want to add logging to the web application by using ELK (Elasticsearch, Logstash, Kibana). Those things run together and can have supervisor for monitoring processes inside one container.
But for most cases it is better to use one process per container. What is more docker command should start process itself, for example running java aplication by
/usr/bin/java -jar application.jar
apart from running external script:
./launchApplication.sh
See discussion on http://www.reddit.com/r/docker/comments/2t1lzp/docker_and_the_pid_1_zombie_reaping_problem/ where the problem is concerned.
I'm new to Docker and was wondering if it was possible (and a good idea) to develop within a docker container.
I mean create a container, execute bash, install and configure everything I need and start developping inside the container.
The container becomes then my main machine (for CLI related works).
When I'm on the go (or when I buy a new machine), I can just push the container, and pull it on my laptop.
This sort the problem of having to keep and synchronize your dotfile.
I haven't started using docker yet, so is it something realistic or to avoid (spacke disk problem and/or pull/push timing issue).
Yes. It is a good idea, with the correct set-up. You'll be running code as if it was a virtual machine.
The Dockerfile configurations to create a build system is not polished and will not expand shell variables, so pre-installing applications may be a bit tedious. On the other hand after building your own image to create new users and working environment, it won't be necessary to build it again, plus you can mount your own file system with the -v parameter of the run command, so you can have the files you are going to need both in your host and container machine. It's versatile.
> sudo docker run -t -i -v
/home/user_name/Workspace/project:/home/user_name/Workspace/myproject <container-ID>
I'll play the contrarian and say it's a bad idea. I've done work where I've tried to keep a container "long running" and have modified it, but then accidentally lost it or deleted it.
In my opinion containers aren't meant to be long running VMs. They are just meant to be instances of an image. Start it, stop it, kill it, start it again.
As Alex mentioned, it's certainly possible, but in my opinion goes against the "Docker" way.
I'd rather use VirtualBox and Vagrant to create VMs to develop in.
Docker container for development can be very handy. Depending on your stack and preferred IDE you might want to keep the editing part outside, at host, and mount the directory with the sources from host to the container instead, as per Alex's suggestion. If you do so, beware potential performance issue on macos x with boot2docker.
I would not expect much from the workflow with pushing the images to sync between dev environments. IMHO keeping Dockerfiles together with the code and synching by SCM means is more straightforward direction to start with. I also carry supporting Makefiles to build image(s) / run container(s) same place.
I've heard about Docker some days ago and wanted to go across.
But in fact, I don't know what is the purpose of this "container"?
What is a container?
Can it replace a virtual machine dedicated to development?
What is the purpose, in simple words, of using Docker in companies? The main advantage?
VM: Using virtual machine (VM) software, for example, Ubuntu can be installed inside a Windows. And they would both run at the same time. It is like building a PC, with its core components like CPU, RAM, Disks, Network Cards etc, within an operating system and assemble them to work as if it was a real PC. This way, the virtual PC becomes a "guest" inside an actual PC which with its operating system, which is called a host.
Container: It's same as above but instead of using an entire operating system, it cut down the "unnecessary" components of the virtual OS to create a minimal version of it. This lead to the creation of LXC (Linux Containers). It therefore should be faster and more efficient than VMs.
Docker: A docker container, unlike a virtual machine and container, does not require or include a separate operating system. Instead, it relies on the Linux kernel's functionality and uses resource isolation.
Purpose of Docker: Its primary focus is to automate the deployment of applications inside software containers and the automation of operating system level virtualization on Linux. It's more lightweight than standard Containers and boots up in seconds.
(Notice that there's no Guest OS required in case of Docker)
[ Note, this answer focuses on Linux containers and may not fully apply to other operating systems. ]
What is a container ?
It's an App: A container is a way to run applications that are isolated from each other. Rather than virtualizing the hardware to run multiple operating systems, containers rely on virtualizing the operating system to run multiple applications. This means you can run more containers on the same hardware than VMs because you only have one copy of the OS running, and you do not need to preallocate the memory and CPU cores for each instance of your app. Just like any other app, when a container needs the CPU or Memory, it allocates them, and then frees them up when done, allowing other apps to use those same limited resources later.
They leverage kernel namespaces: Each container by default will receive an environment where the following are namespaced:
Mount: filesystems, / in the container will be different from / on the host.
PID: process id's, pid 1 in the container is your launched application, this pid will be different when viewed from the host.
Network: containers run with their own loopback interface (127.0.0.1) and a private IP by default. Docker uses technologies like Linux bridge networks to connect multiple containers together in their own private lan.
IPC: interprocess communication
UTS: this includes the hostname
User: you can optionally shift all the user id's to be offset from that of the host
Each of these namespaces also prevent a container from seeing things like the filesystem or processes on the host, or in other containers, unless you explicitly remove that isolation.
And other linux security tools: Containers also utilize other security features like SELinux, AppArmor, Capabilities, and Seccomp to limit users inside the container, including the root user, from being able to escape the container or negatively impact the host.
Package your apps with their dependencies for portability: Packaging an application into a container involves assembling not only the application itself, but all dependencies needed to run that application, into a portable image. This image is the base filesystem used to create a container. Because we are only isolating the application, this filesystem does not include the kernel and other OS utilities needed to virtualize an entire operating system. Therefore, an image for a container should be significantly smaller than an image for an equivalent virtual machine, making it faster to deploy to nodes across the network. As a result, containers have become a popular option for deploying applications into the cloud and remote data centers.
Can it replace a virtual machine dedicated to development ?
It depends: If your development environment is running Linux, and you either do not need access to hardware devices, or it is acceptable to have direct access to the physical hardware, then you'll find a migration to a Linux container fairly straight forward. The ideal target for a docker container are applications like web based API's (e.g. a REST app), which you access via the network.
What is the purpose, in simple words, of using Docker in companies ? The main advantage ?
Dev or Ops: Docker is typically brought into an environment in one of two paths. Developers looking for a way to more rapidly develop and locally test their application, and operations looking to run more workload on less hardware than would be possible with virtual machines.
Or Devops: One of the ideal targets is to leverage Docker immediately from the CI/CD deployment tool, compiling the application and immediately building an image that is deployed to development, CI, prod, etc. Containers often reduce the time to move the application from the code check-in until it's available for testing, making developers more efficient. And when designed properly, the same image that was tested and approved by the developers and CI tools can be deployed in production. Since that image includes all the application dependencies, the risk of something breaking in production that worked in development are significantly reduced.
Scalability: One last key benefit of containers that I'll mention is that they are designed for horizontal scalability in mind. When you have stateless apps under heavy load, containers are much easier and faster to scale out due to their smaller image size and reduced overhead. For this reason you see containers being used by many of the larger web based companies, like Google and Netflix.
Same questions were hitting my head some days ago and what i found after getting into it, let's understand in very simple words.
Why one would think about docker and containers when everything seems fine with current process of application architecture and development !!
Let's take an example that we are developing an application using nodeJs , MongoDB, Redis, RabbitMQ etc services [you can think of any other services].
Now we face these following things as problems in application development and shipping process if we forget about existence of docker or other alternatives of containerizing applications.
Compatibility of services(nodeJs, mongoDB, Redis, RabbitMQ etc.) with OS(even after finding compatible versions with OS, if something unexpected happens related to versions then we need to relook the compatibility again and fix that).
If two system components requires a library/dependency with different versions in application in OS(That need a relook every time in case of an unexpected behaviour of application due to library and dependency version issue).
Most importantly , If new person joins the team, we find it very difficult to setup the new environment, person has to follow large set of instructions and run hundreds of commands to finally setup the environment And it takes time and effort.
People have to make sure that they are using right version of OS and check compatibilities of services with OS.And each developer has to follow this each time while setting up.
We also have different environment like dev, test and production.If One developer is comfortable using one OS and other is comfortable with other OS And in this case, we can't guarantee that our application will behave in same way in these two different situations.
All of these make our life difficult in process of developing , testing and shipping the applications.
So we need something which handles compatibility issue and allows us to make changes and modifications in any system component without affecting other components.
Now we think about docker because it's purpose is to
containerise the applications and automate the deployment of applications and ship them very easily.
How docker solves above issues-
We can run each service component(nodeJs, MongoDB, Redis, RabbitMQ) in different containers with its own dependencies and libraries in the same OS but with different environments.
We have to just run docker configuration once then all our team developers can get started with simple docker run command, we have saved lot of time and efforts here:).
So containers are isolated environments with all dependencies and
libraries bundled together with their own process and networking
interfaces and mounts.
All containers use the same OS resources
therefore they take less time to boot up and utilise the CPU
efficiently with less hardware costs.
I hope this would be helpful.
Why use docker:
Docker makes it really easy to install and running software without worrying about setup or dependencies. Docker is really made it easy and really straight forward for you to install and run software on any given computer not just your computer but on web servers as well or any cloud based computing platform. For example when I went to install redis in my computer by using bellow command
wget http://download.redis.io/redis-stable.tar.gz
I got error,
Now I could definitely go and troubleshoot this install that program and then try installing redis again, and I kind of get into endless cycle of trying to do all bellow troubleshooting as you I am installing and running software.
Now let me show you how easy it is to run read as if you are making use of Docker instead. just run the command docker run -it redis, this command will install docker without any error.
What docker is:
To understand what is docker you have to know about docker Ecosystem.
Docker client, server, Machine, Images, Hub, Composes are all projects tools pieces of software that come together to form a platform where ecosystem around creating and running something called containers, now if you run the command docker run redis something called docker CLI reached out to something called the Docker Hub and it downloaded a single file called an image.
An image is a single file containing all the dependencies and all the configuration required to run a very specific program, for example redis this which is what the image that you just downloaded was supposed to run.
This is a single file that gets stored on your hard drive and at some point time you can use this image to create something called a container.
A container is an instance of an image and you can kind of think it as being like a running program with it's own isolated set of hardware resources so it kind of has its own little set or its own little space of memory has its own little space of networking technology and its own little space of hard drive space as well.
Now lets examine when you give bellow command:
sudo docker run hello-world
Above command will starts up the docker client or docker CLI, Docker CLI is in charge of taking commands from you kind of doing a little bit of processing on them and then communicating the commands over to something called the docker server, and docker server is in charge of the heavy lifting when we ran the command Docker run hello-world,
That meant that we wanted to start up a new container using the image with the name of hello world, the hello world image has a tiny tittle program inside of it whose sole purpose or sole job is to print out the message that you see in the terminal.
Now when we ran that command and it was issued over to the docker server a series of actions very quickly occurred in background. The Docker server saw that we were trying to start up a new container using an image called hello world.
The first thing that the docker server did was check to see if it already had a local copy like a copy on your personal machine of the hello world image or that hello world file.So the docker server looked into something called the image cache.
Now because you and I just installed Docker on our personal computers that image cache is currently empty, We have no images that have already been downloaded before.
So because the image cache was empty the docker server decided to reach out to a free service called Docker hub. The Docker Hub is a repository of free public images that you can freely download and run on your personal computer. So Docker server reached out to Docker Hub and and downloaded the hello world file and stored it on your computer in the image-cache, where it can now be re-run at some point the future very quickly without having to re-downloading it from the docker hub.
After that the docker server will use it to create an instance of a container, and we know that a container is an instance of an image, its sole purpose is to run one very specific program. So the docker server then essentially took that image file from image cache and loaded it up into memory to created a container out of it and then ran a single program inside of it. And that single programs purpose was to print out the message that you see.
What a container is:
A container is a process or a set of processes that have a grouping of resource specifically assigned to it, in the bellow is a diagram that anytime that we think about a container we've got some running process that sends a system call to a kernel, the kernel is going to look at that incoming system call and direct it to a very specific portion of the hard drive, the RAM, CPU or what ever else it might need and a portion of each of these resources is made available to that singular process.
Let me try to provide as simple answers as possible:
But in fact, I don't know what is the purpose of this "container"?
What is a container?
Simply put: a package containing software. More specifically, an application and all its dependencies bundled together. A regular, non-dockerised application environment is hooked directly to the OS, whereas a Docker container is an OS abstraction layer.
And a container differs from an image in that a container is a runtime instance of an image - similar to how objects are runtime instances of classes in case you're familiar with OOP.
Can it replace a virtual machine dedicated to development?
Both VMs and Docker containers are virtualisation techniques, in that they provide abstraction on top of system infrastructure.
A VM runs a full “guest” operating system with virtual access to host resources through a hypervisor. This means that the VM often provides the environment with more resources than it actually needs In general, VMs provide an environment with more resources than most applications need. Therefore, containers are a lighter-weight technique. The two solve different problems.
What is the purpose, in simple words, of using Docker in companies?
The main advantage?
Containerisation goes hand-in-hand with microservices. The smaller services that make up the larger application are often tested and run in Docker containers. This makes continuous testing easier.
Also, because Docker containers are read-only they enforce a key DevOps principle: production services should remain unaltered
Some general benefits of using them:
Great isolation of services
Great manageability as containers contain everything the app needs
Encapsulation of implementation technology (in the containers)
Efficient resource utilisation (due to light-weight os virtualisation) in comparison to VMs
Fast deployment
If you don't have any prior experience with Docker this answer will cover the basics needed as a developer.
Docker has become a standard tool for DevOps as it is an effective application to improve operational efficiencies. When you look at why Docker was created and why it is very popular, it is mostly for its ability to reduce the amount of time it takes to set up the environments where applications run and are developed.
Just look at how long it takes to set up an environment where you have React as the frontend, a node and express API for backend, which also needs Mongo. And that's just to start. Then when your team grows and you have multiple developers working on the same front and backend and therefore they need to set up the same resources in their local environment for testing purposes, how can you guarantee every developer will run the same environment resources, let alone the same versions? All of these scenarios play well into Docker's strengths where it's value comes from setting containers with specific settings, environments and even versions of resources. Simply type a few commands to have Docker set up, install, and run your resources automatically.
Let's briefly go over the main components. A container is basically where your application or specific resource is located. For example, you could have the Mongo database in one container, then the frontend React application, and finally your node express server in the third container.
Then you have an image, which is from what the container is built. The images contains all the information that a container needs to build a container exactly the same way across any systems. It's like a recipe.
Then you have volumes, which holds the data of your containers. So if your applications are on containers, which are static and unchanging, the data that change is on the volumes.
And finally, the pieces that allow all these items to speak is networking. Yes, that sounds simple, but understand that each container in Docker have no idea of the existence of each container. They're fully isolated. So unless we set up networking in Docker, they won't have any idea how to connect to one and another.
There are really good answers above which I found really helpful.
Below I had drafted a simpler answer:
Reasons to dockerize my web application?
a. One OS for multiple applications ( Resources are shared )
b. Resource manangement ( CPU / RAM) is efficient.
c. Serverless Implementation made easier -Yes, AWS ECS with Fargate, But serverless can be achieved with Lamdba
d. Infra As Code - Agree, but IaC can be achieved via Terraforms
e. "It works in my machine" Issue
Still, below questions are open when choosing dockerization
A simple spring boot application
a. Jar file with size ~50MB
b. creates a Docker Image ~500MB
c. Cant I simply choose a small ec2 instance for my microservices.
Financial Benefits (reducing the individual instance cost) ?
a. No need to pay for individual OS subscription
b. Is there any monetary benefit like the below implementation?
c. let say select t3.2xlarge ( 8 core / 32 GB) and start 4-5 docker images ?