Prevent concurrent access to the same data in Dart - dart

I'm trying to create a file cache in Dart (Flutter), where a file only gets downloaded once and then cached for future requests. (Yes, I know there are existing packages for this, but my needs are more specific.)
Problem is, if I have two widgets on the same page trying to display the same image, they're both making the same request at the same time, downloading the file twice.
I tried turning the cache into a singleton, handing out a single instance of itself, but that seems to have no effect:
class FileCache {
final _fileList = List<File>();
static FileCache _instance;
factory FileCache() {
if (_instance == null) {
_instance = FileCache._internal();
}
return _instance;
}
FileCache._internal();
bool add(File file) {
if (_fileList.contains(file)) {
return false;
}
_fileList.add(file);
return true;
}
void remove(File file) {
_fileList.remove(file);
}
}
I did see another package that does synchronization (here), but looking at the Dart code I have no idea how it is enforcing the synchronous access.
How, in Dart, can you force a specific class or member variable to be accessed serially for this purpose?

The Flutter UI runs in a single isolate. Memory isn't shared across isolates (hence the name), so you don't need to worry about parallel operations (as you would with multiple threads on a multi-core system). However, you do need to worry about concurrent operations that can be interleaved when execution yields from await.
This means that you don't need special atomic primitives. You could set a flag when downloading a file to avoid downloading it again.
You don't use Futures anywhere, so there are no places for your code (as shown) to be interrupted. However, you also don't show the code where you're actually downloading files, and presumably you have asynchrony there. You could do something like:
final pendingDownloads = <String, Future<void>>{};
Future<void> downloadFile(String url) {
if (pendingDownloads.containsKey(url)) {
return pendingDownloads[url];
}
Future<void> downloadFileInternal() async {
final request = await HttpClient().getUrl(...);
...
}
pendingDownloads[url] = downloadFileInternal();
return pendingDownloads[url];
}

Related

Assign Thread to Swift Concurrency Actor

I'm processing ~10k events between two different classes. One is fetching them, and the other is storing them in a dictionary. Now since the fetching class is also doing more stuff with the data than just passing it to the second class, it really doesn't make a lot of sense to send them over as a big bulk, but rather I'm processing them like
actor Fetcher {
let someProcessor = Processor()
func getData() async {
let results = await Rest.getData()
for result in results {
await someProcessor.doStuff(with: result)
await someOtherObject.handle(result)
}
}
}
actor Processor {
func doStuff(with result: Result) async {
// ...
}
}
now maybe you can see the problem. With both of them being actors, I keep sending around data between threads. Processing ~10k results thus takes 8 seconds. This is mostly because of thread switches. If I make my code non-thread-safe by removing the actor keyword it takes less than a second. It would remove some functionality of my code if I did that though. Is there a way to tell swift that these two actors should always run in the same Thread to avoid the switching?

Xamarin iOS Bluetooth peripheral scanning never sees any peripherals

I am trying to create a Xamarin.Forms app that will run on both iOS and Android. Eventually I need instances of the app to communicate with each other via Bluetooth, but I'm stuck on getting the iOS side to do anything with Bluetooth. I originally tried to work with Plugin.BluetoothLE and Plugin.BLE, but after a week and a half I was not able to get advertising or scanning to work on either OS with either plugin, so I decided to try implementing simple Bluetooth interaction using the .NET wrappers of the platform APIs, which at least are well documented. I did get scanning to work fine on the Android side. With iOS, though, what I have right now builds just fine, and runs on my iPad without errors, but the DiscoveredPeripheral handler is never called, even though the iPad is just a few inches from the Android tablet and presumably should be able to see the same devices. I have verified this by setting a breakpoint in that method, which is never reached; and when I open the Bluetooth Settings on the iPad to make it discoverable the app version on the Android tablet can see it, so I don't think it's an iPad hardware issue.
It seems obvious that there is simply some part of the process I don't know to do, but it's not obvious (to me) where else to look to find out what it is. Here is the code for the class that interacts with the CBCentralManager (as far as I understand from what I've read, this should include everything necessary to return a list of peripherals):
using MyBluetoothApp.Shared; // for the interfaces and constants
using CoreBluetooth;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using Xamarin.Forms;
[assembly: Dependency(typeof(MyBluetoothApp.iOS.PeripheralScanner))]
namespace MyBluetoothApp.iOS
{
public class PeripheralScanner : IPeripheralScanner
{
private readonly CBCentralManager manager;
private List<IPeripheral> foundPeripherals;
public PeripheralScanner()
{
this.foundPeripherals = new List<IPeripheral>();
this.manager = new CBCentralManager();
this.manager.DiscoveredPeripheral += this.DiscoveredPeripheral;
this.manager.UpdatedState += this.UpdatedState;
}
public async Task<List<IPeripheral>> ScanForService(string serviceUuid)
{
return await this.ScanForService(serviceUuid, BluetoothConstants.DEFAULT_SCAN_TIMEOUT);
}
public async Task<List<IPeripheral>> ScanForService(string serviceUuid, int duration)
{
CBUUID uuid = CBUUID.FromString(serviceUuid);
//this.manager.ScanForPeripherals(uuid);
this.manager.ScanForPeripherals((CBUUID)null); // For now I'd be happy to see ANY peripherals
await Task.Delay(duration);
this.manager.StopScan();
return this.foundPeripherals;
}
private void DiscoveredPeripheral(object sender, CBDiscoveredPeripheralEventArgs args)
{
this.foundPeripherals.Add(new CPeripheral(args.Peripheral));
}
private void UpdatedState(object sender, EventArgs args)
{
CBCentralManagerState state = ((CBCentralManager)sender).State;
if (CBCentralManagerState.PoweredOn != state)
{
throw new Exception(state.ToString());
}
}
}
}
Can anyone point me in the direction of understanding what I'm missing?
EDIT: O...K, I've discovered quite by accident that if I do this in the shared code:
IPeripheralScanner scanner = DependencyService.Get<IPeripheralScanner>();
List<IPeripheral> foundPeripherals = await scanner.ScanForService(BluetoothConstants.VITL_SERVICE_UUID);
twice in a row, it works the second time. I feel both more hopeful and much more confused.
The underlying problem was that in the first instantiation of PeripheralScanner, ScanForService was being called before State was updated. I tried many ways of waiting for that event to be raised so I could be sure the state was PoweredOn, but nothing seemed to work; polling loops simply never reached the desired state, but if I threw an Exception in the UpdatedState handler it was thrown within milliseconds of launch and the state at that time was always PoweredOn. (Breakpoints in that handler caused the debugging to freeze with the output Resolved pending breakpoint, which not even the VS team seems to be able to explain).
Reading some of the Apple developer blogs I found that this situation is most often avoided by having the desired action occur within the UpdatedState handler. It finally soaked into my thick head that I was never seeing any effects from that handler running because the event was being raised and handled on a different thread. I really need to pass the service UUID to the scanning logic, and to interact with a generic List that I can return from ScanForService, so just moving it all to the handler didn't seem like a promising direction. So I created a singleton for flagging the state:
internal sealed class ManagerState // .NET makes singletons easy - Lazy<T> FTW
{
private static readonly Lazy<ManagerState> lazy = new Lazy<ManagerState>(() => new ManagerState());
internal static ManagerState Instance { get { return ManagerState.lazy.Value; } }
internal bool IsPoweredOn { get; set; }
private ManagerState()
{
this.IsPoweredOn = false;
}
}
and update it in the handler:
private void updatedState(object sender, EventArgs args)
{
ManagerState.Instance.IsPoweredOn = CBCentralManagerState.PoweredOn == ((CBCentralManager) sender).State;
}
then poll that at the beginning of ScanForService (in a separate thread each time because, again, I will not see the updates in my base thread):
while (false == await Task.Run(() => ManagerState.Instance.IsPoweredOn)) { }
I'm not at all sure this is the best solution, but it does work, at least in my case. I guess I could move the logic to the handler and create a fancier singleton class for moving all the state back and forth, but that doesn't feel as good to me.

Flutter how to rerun future?

Is it possible to make future somehow like a re-runnable task? For example, if I have to made a network call using a future and it failed for authentication reason. I would like to re-run the network call future once auth succeeded. How can I do that?
My expected code would probably look similar to this
Future task = fetchData();
Future handleService(task) async {
try {
final data = await task;
return data;
} catch (ex) {
// requires authentication
if(ex.code == 202) {
bool authSuccess = await reAuth();
if (authSuccess) {
await task
}
}
}
}
Simple answer: you can't re-run a Future.
Future can be completed only once. Moreover, Future represents the result of an async computation. I think about it that way: you run a task that returns a token (Future). When the tasks comletes, it sets the value on the Future.
On top of that, Future can have its value set only once, it cannot be completed with 2 different values (even by the task whose result it represents) Once a value is set, it will always hold the same one, and not allow modification.
In your case, you need to call fetchData again.
If you have a function that may return multiple values, you can use a Stream, but this approach doesn't fit your problem.

Band SDK doesnt seem to work from anywhere but codebehind

Universal App with MVVMLight.
So I started wondering why all the SDK examples were done from code behind rather than using a solid Wrapper class.
So I wanted to write a reusable wrapper class. No luck. Even tried adding that wrapper to a ViewModel, still no luck.
Works fine from MainView.xaml.cs
IBandInfo[] pairedBands = BandClientManager.Instance.GetBandsAsync().Result;
if (pairedBands.Length > 0)
{
using (IBandClient bandClient = await BandClientManager.Instance.ConnectAsync(pairedBands[0]))
{
}
}
The moment I move to any kind of OOP or View Model, ConnectAsync will never return or throw exception. I have tried this 20 different ways, is the SDK broken? What Is happening? No message, no throw, just never returns.
If I throw in Code behind, wallah it works just fine and returns the client in 1/2 second.
I have spend 5-6 hours so far on this. I wanted to create a solid wrapper class for the SDK so I could call easy calls from Model and do things like StartListener(MicrosoftBandSensor sensorToActivate).
Any suggestions?
-- For Phil's comment
I was trying to create backing variables for both client and bandinfo which would be held in a class that the VM uses. I wrote my class as IDisposable so I could dispose of both when I was done with my wrapper. I may be using this wrong to be honest.
MicrosoftBand.MicrosoftBandClient = BandClientManager.Instance.ConnectAsync(pairedBands[0]).Result;
Is what I wanted to call making it a sync call since I wanted to make the calls to bandinfo and client in the constructor then hold both until the class was destroyed and just recall the vars when needed.
My VM has :
public BandInformation MicrosoftBand
{
get { return _microsoftBand; }
set { Set(() => MicrosoftBand, ref _microsoftBand, value); }
}
If they didn't pass the bandclient in the constructor I would use:
private async Task InitBand(IBandInfo bandInfo)
{
if (bandInfo == null)
{
var allBands = await BandClientManager.Instance.GetBandsAsync();
if (allBands.Length > 0)
{
bandInfo = allBands[0];
}
}
var bandClient = await BandClientManager.Instance.ConnectAsync(bandInfo);
MicrosoftBandInfo = bandInfo;
MicrosoftBandClient = bandClient;
if (MicrosoftBandClient == null)
{
AddErrorMessage("This sample app requires a Microsoft Band paired to your device.Also make sure that you have the latest firmware installed on your Band, as provided by the latest Microsoft Health app.");
}
}
This seems fine working with BandInfo. I get back a solid seeming to work object For the client I get "thread exited" and nothing else.
Note: I had it in a try catch throwaway version at one point and nothing threw n exception either.
I assume you can do this like you would any other IDisposable where you handle the disposing yourself.
I can reinstantiate the BandClient each time, just figured I needed to detach the events at some point, meaning I had to keep ahold of the bandclient. I could keep it until done and would add and remove events as I needed each time.
It's likely your blocking call to .Result within your VM constructor is what was causing the hang. IBandClientManager.ConnectAsync() may implicitly display UI (a Windows Runtime dialog asking the user to confirm that she wants to use that specific Bluetooth device). If you've blocked the UI thread when it attempts to display UI, you've now gotten yourself into a deadlock.
Calling Task.Result is almost never a good idea, much less doing so within a constructor where you have little idea on which thread the constructor is executing. If you're working with an async API (such as the Band SDK) then your best bet is to keep that interaction async as well. Instead, defer calling ConnectAsync() until you actually need to, and do so from an async method in your VM. (Deferring the connection is a good idea anyway because you want to minimize the time connected to the Band to preserve battery life.) Then call Dispose() as early as possible to close the Bluetooth connection.
So I went and looked at a bunch of examples. Finally I landed on the GravityHeroUAP demo on the MSDN site. https://msdn.microsoft.com/en-us/magazine/mt573717.aspx?f=255&MSPPError=-2147217396
I looked at his code and the source: https://github.com/kevinash/GravityHeroUWP
He was essentially doing what I wanted to do.
However, I noticed something Bizarre. In his viewmodel everything was static!
public static IBandInfo SelectedBand
{
get { return BandModel._selectedBand; }
set { BandModel._selectedBand = value; }
}
private static IBandClient _bandClient;
public static IBandClient BandClient
{
get { return _bandClient; }
set
{
_bandClient = value;
}
}
I ended up copying this pattern (though had to throw away my favorite MVVM lib in the process, though I am sure I can get it back).
My common pattern in my VM's:
public string ExceptionOnStart {
get { return _exceptionOnStart; }
set { Set(() => ExceptionOnStart, ref _exceptionOnStart, value); }
}
It seems to be working now!
That and I got data way too fast for the
await Windows.Storage.FileIO.AppendLinesAsync(dataFile, new List<string> { toWrite });
Thank you for the help Phil, it got me looking in the right direction!
Thank you very, very much. Spent WAY to long on this. Mark

Dart Web Server: prevent crash

Id'like to develop a web services + web sockets server using dart but the problem is I can't ensure the server's high availability because of uncatched exceptions in isolates.
Of course, I have try-catched my main function, but this is not enough.
If an exception occurs in the then() part of a future, the server will crash.
Which means that ONE flawd request can put the server down.
I realize that this is an open issue but is there any way to acknoledge any crash WITHOUT crashing the VM so that the server can continue serving other requests ?
Thank you.
What I've done in the past is use the main isolate to launch a child isolate which hosts the actual web server. When you launch an isolate, you can pass in an "uncaught exception" handler to the child isolate (I also think you should be able to register one at the top-level as well, to prevent this particular issue, as referenced by the issue in the original question).
Example:
import 'dart:isolate';
void main() {
// Spawn a child isolate
spawnFunction(isolateMain, uncaughtExceptionHandler);
}
void isolateMain() {
// this is the "real" entry point of your app
// setup http servers and listen etc...
}
bool uncaughtExceptionHandler(ex) {
// TODO: add logging!
// respawn a new child isolate.
spawnFunction(isolateMain, uncaughtException);
return true; // we've handled the uncaught exception
}
Chris Buckett gave you a good way to restart your server when it fails. However, you still don't want your server to go down.
The try-catch only works for synchronous code.
doSomething() {
try {
someSynchronousFunc();
someAsyncFunc().then(() => print('foo'));
} catch (e) {
// ...
}
}
When your async method completes or fails, it happens "long" after the program is done with the doSomething method.
When you write asynchronous code, it's generally a good idea to start a method by returning a future:
Future doSomething() {
return new Future(() {
// your code here.
var a = b + 5; // throws and is caught.
return someAsyncCall(); // Errors are forwarded if you return the Future directly.
});
}
This ensures that if you have code that throws, it catches them and the caller can then catchError() them.
If you write this way, you have much less crashes, assuming that you have some error handling at the top level at least.
Whenever you are calling a method that returns a Future, either return it directly (like shown above) or catchError() for it so that you are handling the possible errors locally.
There's a great lengthy article on the homepage that you should read.

Resources