Geomesa attribute index in HBase - geolocation

HBase doesn't support the secondary index, but Geomesa which stores data on top of HBase supports the attribute indexing. How is that possible?

GeoMesa stores multiple copies of your data, using different HBase tables for each different index.
Edit: there is some documentation here on the different index implementations. In HBase, each index is a separate table.

Related

Multi Tenant dynamic key value store

I have to implement a system where a tenant can store multiple key-value stores. one key-value store can have a million records, and there will be multiple columns in one store
[Edited] I have to store tabular data (list with multiple columns) like Excel where column headers will be unique and have no defined schema.
This will be a kind of static data (eventually updated).
We will provide a UI to handle those updates.
Every tenant would like to store multiple table structured data which they have to refer it in different applications and the contract will be JSON only.
For Example, an Organization/Tenant wants to store their Employees List/ Country-State List, and there are some custom lists that are customized for the product and this data is in millions.
A simple solution is to use SQL but here schema is not defined, this is a user-defined schema, and though I have handled this in SQL, there are some performance issues, so I want to choose a NoSQL DB that suits better for this requirement.
Design Constraints:
Get API latency should be minimum.
We can simply assume the Pareto rule, 80:20 80% read calls and 20% write so it is a read-heavy application
Users can update one of the records/one columns
Users can do queries based on some column value, we need to implement indexes on multiple columns.
It's schema-less so we can simply assume it is NoSql, SQL also supports JSON but it is very hard to update a single row, and we can not define indexes on dynamic columns.
I want to segregate key-values stores per tenant, no list will be shared between tenants.
One Key Value Store :
Another key value store example: https://datahub.io/core/country-list
I am thinking of Cassandra or any wide-column database, we can also think of a document database (Mongo DB), every collection can be a key-value store or Amazon Dynamo database
Cassandra: allows you to partition data by partition key and in my use case I may want to get data by different columns in Cassandra we have to query all partitions which will be expensive.
Your example data shows duplicate items, which is not something NoSQL datbases can store.
DynamoDB can handle this scenario quite efficiently, its well suited for high read activity and delivers consistent single digit ms low latency at any scale. One caveat of DynamoDB compared to the others you mention is the 400KB item size limit.
In order to get top performance from DynamoDB, you have to utilize the Partition key as much as possible, because it provides you with hash-based access (super fast).
Its obvious that unique identifier for the user should be present (username?) in the PK, but if there is another field that you always have during request time, like the country for example, you should include it in the PK.
Like so
PK SK
Username#S2#Country#US#State#Georgia Address#A1
It might be worth storing a mapping for the countries alone so you can retrieve them before executing the heavy query. Global Indexes can't be more than 20, keep that in mind and reuse/overload indexes and keys as much as possible.
Stick to single table design to utilize this better.
As mentioned by Lee Hannigan, duplicated elements are not supported, all keys (including those of the indexes) must be unique pairs

Alasql Best Practices

I'm new to alasql (which is amazing). While the documentation shows you how, it doesn't provide a lot information on best practices.
To date I have simply been running queries against an array of arrays (of js objects). i haven't created a database object or table objects.
Are there performance (speed, memory, other) benefits of using database and table objects over an array of arrays?
Here is a real world example. I have 2 sets of data that I am loading: Employees (10 columns) and Employee Sales (5 columns), that are joined on an EmployeeID column. Employees will be relatively small (say, 100 rows), whereas Employee Sales will have 10,000 records. My current approach is to simply run a query where I join those 2 set of data together and end up with one big result set: 10,000 rows of data with 14 columns per row (repeating every column in the Employee data set), which I then pull data from using dynamic filters, interactivity, etc.
This big data set is stored in memory the whole time, but this has the advantage that I don't need to rerun that query over and over. Alternatively, I could simply run the join against the 2 data sets each time I need it, then remove it from memory after.
Also, if I am joining together multiple tables, can I create indexes on the join columns to speed up performance? I see in examples where indexes are created, but there is nothing else in the documentation. (Nothing on this page: https://github.com/agershun/alasql/wiki/Sql). What is the memory impact of indexes? What are the performance impacts of insertions?
Primary keys are supported, but there is no documentation. Does this create an index?
Are there performance (speed, memory, other) benefits of using database and table objects over an array of arrays?
If you put indexes on your tables then - Yes - you get performance benefits. How much depends on your data.
if I am joining together multiple tables, can I create indexes on the join columns to speed up performance?
Yes. And all other column your put into a "where" condition.

Strategies to speed up access to databases when working with columns containing massive amounts of data (spatial columns, etc)

First things first, I am an amateur, self-taught ruby programmer who came of age as a novice engineer in the age of super-fast computers where program efficiency was not an issue in the early stages of my primary GIS software development project. This technical debt is starting to tax my project and I want to speed up access to this lumbering GIS database.
Its a postgresql database with a postgis extension, controlled inside of rails, which immediately creates efficiency issues via the object-ification of database columns when accessing and/or manipulating database records with one or many columns containing text or spatial data easily in excess of 1 megabyte per column.
Its extremely slow now, and it didn't used to be like this.
One strategy: I'm considering building child tables of my large spatial data tables (state, county, census tract, etc) so that when I access the tables I don't have to load the massive spatial columns every time I access the objects. But then doing spatial queries might be difficult on a parent table's children. Not sure exactly how I would do that but I think its possible.
Maybe I have too many indexes. I have a lot of spatial indexes. Do additional spatial indexes from tables I'm not currently using slow down my queries? How about having too many for one table?
These tables have a massive amount of columns. Maybe I should remove some columns, or create parent tables for the columns with massive serialized hashes?
There are A LOT of tables I don't use anymore. Is there a reason other than tidiness to remove these unused tables? Are they slowing down my queries? Simply doing a #count method on some of these tables takes TIME.
PS:
- Looking back at this 8 hours later, I think what I'm equally trying to understand is how many of the above techniques are completely USELESS when it comes to optimizing (rails) database performance?
You don't have to read all of the columns of the table. Just read the ones you need.
You can:
MyObject.select(:id, :col1, :col2).where(...)
... and the omitted columns are not read.
If you try to use a method that needs one of the columns you've omitted then you'll get an ActiveModel::MissingAttributeError (Rails 4), but you presumably know when you're going to need them or not.
The inclusion of large data sets in the table is going to be a noticeable problem from the database side if you have full table scans, and then you might consider moving these data to other tables.
If you only use Rails to read and write the large data columns, and don't use PostgreSQL functions on them, you might be able to compress the data on write and decompress on read. Override the getter and setter methods by using write_attribute and read_attribute, compressing and decompressing (respectively of course) the data.
Indexing. If you are using postgres to store such large chucks of data in single fields consider storing it as Array, JSON or Hstore fields. If you index it using the gin index types so you can search effectively within a given field.

Dynamic Queries using Couch_Potato

The documentation for creating a fairly straightforward view is easy enough to find:
view :completed, :key => :name, :conditions => 'doc.completed === true'
How, though, does one construct a view with a condition created on the fly? For example, if I want to use a query along the lines of
doc.owner_id == my_var
Where my_var is set programatically.
Is this even possible? I'm very new to NoSQL so apologies if I'm making no sense.
Views in CouchDB are incrementally built / indexed as data is inserted / updated into that particular database. So in order to take full advantage of the power behind views you won't want to dynamically query them. You'll want to construct your views in such a way that you can efficiently access the data based on the expected usage patterns of the application. In my experience it's not uncommon to have multiple views each giving you a different way to access / query the same data. I find it helpful to think of CouchDB views as a way to systematically denormalize your documents.
On the other hand there are also ways to generalize your indexes in your views so you can use a single view for endless combinations of queries.
For example, you have an "articles" database, and each article document contains a list of tags. If you want to set up a query to dynamically retrieve all articles tagged with a handful of tags, you could emit multiple entries to the view on the same document:
// this article is tagged with "tag1","tag2","tag3"
emit("tag1",doc._id);
emit("tag2",doc._id);
emit("tag3",doc._id);
....
Now you have a way to query: Give me all articles tagged with these words: ["tag1","tag2",etc]
For more info on how to query multiple keys see "Parameter -> keys" in the table of Querying Options here:
http://wiki.apache.org/couchdb/HTTP_view_API#Querying_Options
One problem with the above example is it would produce duplicates if a single document was tagged with both or all of the tags you were querying for. You can easily de-dupe the results of the view by using a CouchDB "List Function". More info about list functions can be found here:
http://guide.couchdb.org/draft/transforming.html
Another way to construct views for even more robust "dynamic" access to the data would be to compose your indexes out of complex data types such as JavaScript arrays. Also incorporating "range queries" can help. So for example if you have a 3-item array in your index, but only have the first 2 values, you can set up a range query to pull all documents that match the first 2 items of the array. Some useful info about that can be found here:
http://guide.couchdb.org/draft/views.html
Refer to the "startkey", and "endkey" options under "Querying Options" table here:
http://wiki.apache.org/couchdb/HTTP_view_API#Querying_Options
It's good to know how CouchDB indexes itself. It uses a "B+ tree" data structure:
http://guide.couchdb.org/draft/btree.html
Keep this in mind when thinking about how to compose your indexes. This has specific implications about how you need to construct your indexes. For example, you can't expect to get good performance on a view if you query with a range on the first item in the array. For example:
startkey = [a,1,2]
endkey = [z,1,2]
You'll get the performance you'd expect if your query is:
startkey = [1,2,a]
endkey = [1,2,z]
This, in more general terms, means that index order does matter when querying views. Not just on basis of performance, but on basis of what documents will be returned. If you index a document in a view with [1,2,3], you can't expect it to show up in query for index [3,2,1], [2,1,3], or any other combination.
In my experience, most data-access problems can be solved elegantly and efficiently with CouchDB and the basic tools it provides. If / when your project needs true dynamic access to the data, I generally still use CouchDB for common data access needs, but I'll also integrate ElasticSearch using an ElasticSearch plugin which streams your data from CouchDB into ElasticSearch as it becomes available:
http://www.elasticsearch.org/
https://github.com/elasticsearch/elasticsearch-river-couchdb

How to create table order by index in informix

How I can table which is index order in informix ? This means when I insert new element it first order and then insert this element. In oracle I can do something like this:
ORGANIZATION INDEX
is there some equivalent in informix ?
No, there is no similar resource at Informix.
The option you have is reorder the physical rows based on one index from time to time by setting it to cluster with the alter index statement. (Setting an index to NOT CLUSTER is always very quick.)
But there some limitations in using it. The main limitation, in my opinion is:
cannot be done online; this means, you need exclusive access during the operation.
If the table is big, could take a while.
Quote the source: IBM® Informix® 12.10 Index-type options
CLUSTER option usage
You cannot specify the CLUSTER option and the ONLINE keyword in the
same statement. In addition, some secondary-access methods (such as
R-tree) do not support clustering. Before you specify CLUSTER for your
index, be sure that the index uses an access method that supports
clustering. The CREATE CLUSTER INDEX statement fails if a CLUSTER
index already exists on the same table.
CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode);
This statement creates an index on the customer table and physically
orders the rows according to their postal code values, in (by default)
ascending order.
If the CLUSTER option is specified and fragments exist on the data,
values are clustered only within each fragment, and not globally
across the entire table. If the CREATE CLUSTER INDEX statement also
includes the COMPRESSED keyword as a storage option, the database
server issues error -26950. To create a cluster index that supports
compression requires two steps:
Use the CREATE CLUSTER INDEX statement to define a cluster index with no index compression.
Call the SQL administration API task( ) or admin( ) function with the 'index compress' argument to compress the existing cluster index.
You cannot use the CLUSTER option on a forest of trees index.

Resources