Related
Im working on a speaker recognition Neural Network.
What I am doing is taking wav files [ of the Bing Bang Theory first espiode :-) ], than convert it to MFCC coeffs than I make it as an input to an open source api of Neural Network (MLPClassifier) and as output I define a unique vector to each speaker ( Let's say : [1,0,0,0] - sheldon; [0,1,0,0] - Penny; and ect... ), I take 50 random values for testing and the others for fitting ( training )
This is my code, At the begining I got about random accucary for the NN but after some help of amazing guy I improved it to ~42% but I want more :) about 70% :
from sklearn.neural_network import MLPClassifier
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
from os import listdir
from os.path import isfile, join
from random import shuffle
import matplotlib.pyplot as plt
from tqdm import tqdm
from random import randint
import random
winner = [] # this array count how much Bingo we had when we test the NN
random_winner = []
win_len = 0.04 # in seconds
step = win_len / 2
nfft = 2048
for TestNum in tqdm(range(20)): # in every round we build NN with X,Y that out of them we check 50 after we build the NN
X = []
Y = []
onlyfiles = [f for f in listdir("FinalAudios/") if isfile(join("FinalAudios/", f))] # Files in dir
names = [] # names of the speakers
for file in onlyfiles: # for each wav sound
# UNESSECERY TO UNDERSTAND THE CODE
if " " not in file.split("_")[0]:
names.append(file.split("_")[0])
else:
names.append(file.split("_")[0].split(" ")[0])
only_speakers = [] + names
#print only_speakers
names = list(dict.fromkeys(names)) # names of speakers
print names
vector_names = [] # vector for each name
i = 0
vector_for_each_name = [0] * len(names)
for name in names:
vector_for_each_name[i] += 1
vector_names.append(np.array(vector_for_each_name))
vector_for_each_name[i] -= 1
i += 1
for f in onlyfiles:
if " " not in f.split("_")[0]:
f_speaker = f.split("_")[0]
else:
f_speaker = f.split("_")[0].split(" ")[0]
fs, audio = wav.read("FinalAudios/" + f) # read the file
try:
mfcc_feat = python_speech_features.mfcc(audio, samplerate=fs, winlen=win_len,
winstep=step, nfft=nfft, appendEnergy=False)
flat_list = [item for sublist in mfcc_feat for item in sublist]
X.append(np.array(flat_list))
Y.append(np.array(vector_names[names.index(f_speaker)]))
except IndexError:
pass
Z = list(zip(X, Y))
shuffle(Z) # WE SHUFFLE X,Y TO PERFORM RANDOM ON THE TEST LEVEL
X, Y = zip(*Z)
X = list(X)
Y = list(Y)
X = np.asarray(X)
Y = np.asarray(Y)
Y_test = Y[:50] # CHOOSE 50 FOR TEST, OTHERS FOR TRAIN
X_test = X[:50]
X = X[50:]
Y = Y[50:]
print len(X)
clf = MLPClassifier(solver='lbfgs', alpha=3e-2, hidden_layer_sizes=(50, 20), random_state=2) # create the NN
clf.fit(X, Y) # Train it
print list(clf.predict_proba([X[0]])[0])
print list(Y_test[0])
for sample in range(len(X_test)): # add 1 to winner array if we correct and 0 if not, than in the end it plot it
arr = list(clf.predict([X_test[sample]])[0])
if arr.index(max(arr)) == list(Y_test[sample]).index(1):
winner.append(1)
else:
winner.append(0)
if only_speakers[randint(0, len(only_speakers) - 1)] == only_speakers[randint(0, len(only_speakers) - 1)]:
random_winner.append(1)
else:
random_winner.append(0)
# plot winner
plot_x = []
plot_y = []
for i in range(1, len(winner)):
plot_y.append(sum(winner[0:i])*1.0/len(winner[0:i]))
plot_x.append(i)
plot_random_x = []
plot_random_y = []
for i in range(1, len(random_winner)):
plot_random_y.append(sum(random_winner[0:i])*1.0/len(random_winner[0:i]))
plot_random_x.append(i)
plt.plot(plot_x, plot_y, 'r', label='machine learning')
plt.plot(plot_random_x, plot_random_y, 'b', label='random')
plt.xlabel('Number Of Samples')
# naming the y axis
plt.ylabel('Success Rate')
# giving a title to my graph
plt.title('Success Rate : Random Vs ML!')
# function to show the plot
plt.show()
This is my zip file that contains the code and the audio file : https://ufile.io/eggjm1gw
Somebody have an idea how can I improve my accucary?
Edit :
I improved my data set and put convolution model and got 60% accucarry, which is ok but also not good enoguh
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
from os import listdir
import os
import shutil
from os.path import isfile, join
from random import shuffle
from matplotlib import pyplot
from tqdm import tqdm
from random import randint
import tensorflow as tf
from ast import literal_eval as str2arr
from tempfile import TemporaryFile
#win_len = 0.04 # in seconds
#step = win_len / 2
#nfft = 2048
win_len = 0.05 # in seconds
step = win_len
nfft = 16384
results = []
outfile_x = None
outfile_y = None
winner = []
for TestNum in tqdm(range(40)): # We check it several times
if not outfile_x: # if path not exist we create it
X = [] # inputs
Y = [] # outputs
onlyfiles = [f for f in listdir("FinalAudios") if isfile(join("FinalAudios", f))] # Files in dir
names = [] # names of the speakers
for file in onlyfiles: # for each wav sound
# UNESSECERY TO UNDERSTAND THE CODE
if " " not in file.split("_")[0]:
names.append(file.split("_")[0])
else:
names.append(file.split("_")[0].split(" ")[0])
only_speakers = [] + names
namesWithoutDuplicate = list(dict.fromkeys(names))
namesWithoutDuplicateCopy = namesWithoutDuplicate[:]
for name in namesWithoutDuplicateCopy: # we remove low samples files
if names.count(name) < 107:
namesWithoutDuplicate.remove(name)
names = namesWithoutDuplicate
print(names) # print it
vector_names = [] # output for each name
i = 0
for name in names:
vector_for_each_name = i
vector_names.append(np.array(vector_for_each_name))
i += 1
for f in onlyfiles: # for all the files
if " " not in f.split("_")[0]:
f_speaker = f.split("_")[0]
else:
f_speaker = f.split("_")[0].split(" ")[0]
if f_speaker in namesWithoutDuplicate:
fs, audio = wav.read("FinalAudios\\" + f) # read the file
try:
# compute MFCC
mfcc_feat = python_speech_features.mfcc(audio, samplerate=fs, winlen=win_len, winstep=step, nfft=nfft, appendEnergy=False)
#flat_list = [item for sublist in mfcc_feat for item in sublist]
# Create output + inputs
for i in mfcc_feat:
X.append(np.array(i))
Y.append(np.array(vector_names[names.index(f_speaker)]))
except IndexError:
pass
else:
if not os.path.exists("TooLowSamples"): # if path not exist we create it
os.makedirs("TooLowSamples")
shutil.move("FinalAudios\\" + f, "TooLowSamples\\" + f)
outfile_x = TemporaryFile()
np.save(outfile_x, X)
outfile_y = TemporaryFile()
np.save(outfile_y, Y)
# ------------------- RANDOMIZATION, UNNECESSARY TO UNDERSTAND THE CODE ------------------- #
else:
outfile_x.seek(0)
X = np.load(outfile_x)
outfile_y.seek(0)
Y = np.load(outfile_y)
Z = list(zip(X, Y))
shuffle(Z) # WE SHUFFLE X,Y TO PERFORM RANDOM ON THE TEST LEVEL
X, Y = zip(*Z)
X = list(X)
Y = list(Y)
lenX = len(X)
# ------------------- RANDOMIZATION, UNNECESSARY TO UNDERSTAND THE CODE ------------------- #
y_test = np.asarray(Y[:4000]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_test = np.asarray(X[:4000]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_train = np.asarray(X[4000:]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
y_train = np.asarray(Y[4000:]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_val = x_train[-4000:] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
y_val = y_train[-4000:] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
x_train = x_train[:-4000] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
y_train = y_train[:-4000] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
x_train = x_train.reshape(np.append(x_train.shape, (1, 1))) # RESHAPE FOR INPUT
x_test = x_test.reshape(np.append(x_test.shape, (1, 1))) # RESHAPE FOR INPUT
x_val = x_val.reshape(np.append(x_val.shape, (1, 1))) # RESHAPE FOR INPUT
features_shape = x_val.shape
# -------------- OUR TENSOR FLOW NEURAL NETWORK MODEL -------------- #
model = tf.keras.models.Sequential([
tf.keras.layers.Input(name='inputs', shape=(13, 1, 1), dtype='float32'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block1_conv', input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2,2), padding='same', name='block1_pool'),
tf.keras.layers.BatchNormalization(name='block1_norm'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block2_conv',
input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool'),
tf.keras.layers.BatchNormalization(name='block2_norm'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block3_conv',
input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool'),
tf.keras.layers.BatchNormalization(name='block3_norm'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu', name='dense'),
tf.keras.layers.BatchNormalization(name='dense_norm'),
tf.keras.layers.Dropout(0.2, name='dropout'),
tf.keras.layers.Dense(10, activation='softmax', name='pred')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# -------------- OUR TENSOR FLOW NEURAL NETWORK MODEL -------------- #
print("fitting")
history = model.fit(x_train, y_train, epochs=15, validation_data=(x_val, y_val))
print("testing")
results.append(model.evaluate(x_test, y_test)[1])
print(results)
print(sum(results)/len(results))
for i in range(10000):
f_1 = only_speakers[randint(0, len(only_speakers) - 1)]
f_2 = only_speakers[randint(0, len(only_speakers) - 1)]
if " " not in f_1.split("_")[0]:
f_speaker_1 = f_1.split("_")[0]
else:
f_speaker_1 =f_1.split("_")[0].split(" ")[0]
if " " not in f_2.split("_")[0]:
f_speaker_2 = f_2.split("_")[0]
else:
f_speaker_2 =f_2.split("_")[0].split(" ")[0]
if f_speaker_2 == f_speaker_1:
winner.append(1)
else:
winner.append(0)
print(sum(winner)/len(winner))
#]
# if onlyfiles[randint(len(onlyfiles) - 1)] == onlyfiles[randint(len(onlyfiles) - 1)]
#pyplot.plot(history.history['loss'], label='train')
#pyplot.plot(history.history['val_loss'], label='test') Q
#pyplot.legend()
#pyplot.show()
Readin your post these are the following things I could suggest you fix/explore
42% is not that impressive of an accuracy for the task you have at hand, consider the way you are cross-validating e.g. how do you split between a validation, test and training dataset
Your dataset seems very limited. Your task is to identify the speaker. A single episode might not be enough data for this task.
You might want to consider Deep Neural Network libraries such as Keras and Tensorflow. Convolutions is something you can apply directly to the MFC Graph.
If you decide using Tensorflow or Keras consider Triplet-Loss, where you preset a positive and negative example.
Consider reading the current state of the art for your task: https://github.com/grausof/keras-sincnet
Consider reading https://arxiv.org/abs/1503.03832 and adopting it for speech recognition.
The easiest thing you can do to improve your results is adding CNN layers to extract features from the MFCC
I have a dataset of 1127 patients. My goal was to classify each patient to 0 or 1.
I have two different classifiers but with the same purpose - to classify the patient to 0 or 1.
I've run one classifier on 364 patients and the second classifier on the 763 patients.
for each classifier\group, I generated the ROC curve.
Now, I would like to combine the curves.
someone could guide me on how to do it?
I'm thinking of calculating the weighted FPR and TPR, but I'm not sure how to do it.
The number of FPR\TPR pairs is different between the curves (The first ROC curve based on 312 pairs and the second ROC curve based on 666 pairs).
Thanks!!!
Imports
import numpy as np
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt
Data generation
# simulate first dataset with 364 obs
df1 = \
pd.DataFrame(i for i in range(364))
df1['predict_proba_1'] = np.random.normal(0,1,len(df1))
df1['epsilon'] = np.random.normal(0,1,len(df1))
df1['true'] = (0.7*df1['epsilon'] < df1['predict_proba_1']) * 1
df1 = df1.drop(columns=[0, 'epsilon'])
# simulate second dataset with 763 obs
df2 = \
pd.DataFrame(i for i in range(763))
df2['predict_proba_2'] = np.random.normal(0,1,len(df2))
df2['epsilon'] = np.random.normal(0,1,len(df2))
df2['true'] = (0.7*df2['epsilon'] < df2['predict_proba_2']) * 1
df2 = df2.drop(columns=[0, 'epsilon'])
Quick look at generated data
df1
predict_proba_1 true
0 1.234549 1
1 -0.586544 0
2 -0.229539 1
3 0.132185 1
4 -0.411284 0
.. ... ...
359 -0.218775 0
360 -0.985565 0
361 0.542790 1
362 -0.463667 0
363 1.119244 1
[364 rows x 2 columns]
df2
predict_proba_2 true
0 0.278755 1
1 0.653663 0
2 -0.304216 1
3 0.955658 1
4 -1.341669 0
.. ... ...
758 1.359606 1
759 -0.605894 0
760 0.379738 0
761 1.571615 1
762 -1.102565 0
[763 rows x 2 columns]
Necessary functions
def show_ROCs(scores_list: list, ys_list: list, labels_list:list = None):
"""
This function plots a couple of ROCs. Corresponding labels are optional.
Parameters
----------
scores_list : list of array-likes with scorings or predicted probabilities.
ys_list : list of array-likes with ground true labels.
labels_list : list of labels to be displayed in plotted graph.
Returns
----------
None
"""
if len(scores_list) != len(ys_list):
raise Exception('len(scores_list) != len(ys_list)')
fpr_dict = dict()
tpr_dict = dict()
for x in range(len(scores_list)):
fpr_dict[x], tpr_dict[x], _ = roc_curve(ys_list[x], scores_list[x])
for x in range(len(scores_list)):
try:
plot_ROC(fpr_dict[x], tpr_dict[x], str(labels_list[x]) + ' AUC:' + str(round(auc(fpr_dict[x], tpr_dict[x]),3)))
except:
plot_ROC(fpr_dict[x], tpr_dict[x], str(x) + ' ' + str(round(auc(fpr_dict[x], tpr_dict[x]),3)))
plt.show()
def plot_ROC(fpr, tpr, label):
"""
This function plots a single ROC. Corresponding label is optional.
Parameters
----------
fpr : array-likes with fpr.
tpr : array-likes with tpr.
label : label to be displayed in plotted graph.
Returns
----------
None
"""
plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr, label=label)
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
Plotting
show_ROCs(
[df1['predict_proba_1'], df2['predict_proba_2']],
[df1['true'], df2['true']],
['df1 with {} obs'.format(len(df1)), 'df2 with {} obs'.format(len(df2))]
)
I wonder that how can I save a self-trained word2vec to txt file with the format like 'word2vec-google-news' or 'glove.6b.50d' which has the tokens followed by matched vectors.
I export my self-trained vectors to txt file which only has vectors but no tokens in the front of those vectors.
My code for training my own word2vec:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import random
import numpy as np
from six.moves import xrange
import zipfile
import tensorflow as tf
import pandas as pd
filename = ('data/data.zip')
# Step 1: Read the data into a list of strings.
def read_data(filename):
with zipfile.ZipFile(filename) as f:
data = tf.compat.as_str(f.read(f.namelist()[0])).split()
return data
words = read_data(filename)
#print('Data size', len(words))
# Step 2: Build the dictionary and replace rare words with UNK token.
vocabulary_size = 50000
def build_dataset(words):
count = [['UNK', -1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
#print("count",len(count))
dictionary = dict()
for word, _ in count:
dictionary[word] = len(dictionary)
data = list()
unk_count = 0
for word in words:
if word in dictionary:
index = dictionary[word]
else:
index = 0
unk_count += 1
data.append(index)
count[0][1] = unk_count
reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
return data, count, dictionary, reverse_dictionary
data, count, dictionary, reverse_dictionary = build_dataset(words)
#del words # Hint to reduce memory.
#print('Most common words (+UNK)', count[:5])
#print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
data_index = 0
# Step 3: Function to generate a training batch for the skip-gram model.
def generate_batch(batch_size, num_skips, skip_window):
global data_index
assert batch_size % num_skips == 0
assert num_skips <= 2 * skip_window
batch = np.ndarray(shape=(batch_size), dtype=np.int32)
labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 # [ skip_window target skip_window ]
buffer = collections.deque(maxlen=span)
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips):
target = skip_window # target label at the center of the buffer
targets_to_avoid = [skip_window]
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint(0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch, labels
batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
#for i in range(8):
#print(batch[i], reverse_dictionary[batch[i]],'->', labels[i, 0], reverse_dictionary[labels[i, 0]])
# Step 4: Build and train a skip-gram model.
batch_size = 128
embedding_size = 128
skip_window = 2
num_skips = 2
valid_size = 9
valid_window = 100
num_sampled = 64 # Number of negative examples to sample.
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
graph = tf.Graph()
with graph.as_default():
# Input data.
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
# Ops and variables pinned to the CPU because of missing GPU implementation
with tf.device('/cpu:0'):
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]),dtype=tf.float32)
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(weights=nce_weights,biases=nce_biases, inputs=embed, labels=train_labels,
num_sampled=num_sampled, num_classes=vocabulary_size))
# Construct the SGD optimizer using a learning rate of 1.0.
optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)
# Compute the cosine similarity between minibatch examples and all embeddings.
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)
# Add variable initializer.
init = tf.global_variables_initializer()
# Step 5: Begin training.
num_steps = 20000
with tf.Session(graph=graph) as session:
# We must initialize all variables before we use them.
init.run()
#print("Initialized")
average_loss = 0
for step in xrange(num_steps):
batch_inputs, batch_labels = generate_batch(batch_size, num_skips, skip_window)
feed_dict = {train_inputs: batch_inputs, train_labels: batch_labels}
# We perform one update step by evaluating the optimizer op (including it
# in the list of returned values for session.run()
_, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
average_loss += loss_val
#if step % 2000 == 0:
# if step > 0:
# average_loss /= 2000
# The average loss is an estimate of the loss over the last 2000 batches.
# print("Average loss at step ", step, ": ", average_loss)
#average_loss = 0
final_embeddings = normalized_embeddings.eval()
np.savetxt('data/w2v.txt', final_embeddings)
You may want to look at the implementation of _save_word2vec_format() in gensim for an example of Python code which writes that format:
https://github.com/RaRe-Technologies/gensim/blob/e859c11f6f57bf3c883a718a9ab7067ac0c2d4cf/gensim/models/utils_any2vec.py#L104
def _save_word2vec_format(fname, vocab, vectors, fvocab=None, binary=False, total_vec=None):
"""Store the input-hidden weight matrix in the same format used by the original
C word2vec-tool, for compatibility.
Parameters
----------
fname : str
The file path used to save the vectors in.
vocab : dict
The vocabulary of words.
vectors : numpy.array
The vectors to be stored.
fvocab : str, optional
File path used to save the vocabulary.
binary : bool, optional
If True, the data wil be saved in binary word2vec format, else it will be saved in plain text.
total_vec : int, optional
Explicitly specify total number of vectors
(in case word vectors are appended with document vectors afterwards).
"""
if not (vocab or vectors):
raise RuntimeError("no input")
if total_vec is None:
total_vec = len(vocab)
vector_size = vectors.shape[1]
if fvocab is not None:
logger.info("storing vocabulary in %s", fvocab)
with utils.open(fvocab, 'wb') as vout:
for word, vocab_ in sorted(iteritems(vocab), key=lambda item: -item[1].count):
vout.write(utils.to_utf8("%s %s\n" % (word, vocab_.count)))
logger.info("storing %sx%s projection weights into %s", total_vec, vector_size, fname)
assert (len(vocab), vector_size) == vectors.shape
with utils.open(fname, 'wb') as fout:
fout.write(utils.to_utf8("%s %s\n" % (total_vec, vector_size)))
# store in sorted order: most frequent words at the top
for word, vocab_ in sorted(iteritems(vocab), key=lambda item: -item[1].count):
row = vectors[vocab_.index]
if binary:
row = row.astype(REAL)
fout.write(utils.to_utf8(word) + b" " + row.tostring())
else:
fout.write(utils.to_utf8("%s %s\n" % (word, ' '.join(repr(val) for val in row))))
I have been following an example about Sentiment Analysis using Logistic Regression, in which prediction result only gives a 1 or 0 to give positive or negative sentiment respectively.
My challenge is that i want to classify a given user input into one of the four classes (very good, good, average, poor) but my prediction result every time is 1 or 0.
Below is my code sample so far
from sklearn.feature_extraction.text import CountVectorizer
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from sklearn.metrics import classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_files
from sklearn.model_selection import GridSearchCV
import numpy as np
import mglearn
import matplotlib.pyplot as plt
# import warnings filter
from warnings import simplefilter
# ignore all future warnings
#simplefilter(action='ignore', category=FutureWarning)
# Get the dataset from http://ai.stanford.edu/~amaas/data/sentiment/
reviews_train = load_files("aclImdb/train/")
text_train, y_train = reviews_train.data, reviews_train.target
print("")
print("Number of documents in train data: {}".format(len(text_train)))
print("")
print("Samples per class (train): {}".format(np.bincount(y_train)))
print("")
reviews_test = load_files("aclImdb/test/")
text_test, y_test = reviews_test.data, reviews_test.target
print("Number of documents in test data: {}".format(len(text_test)))
print("")
print("Samples per class (test): {}".format(np.bincount(y_test)))
print("")
vect = CountVectorizer(stop_words="english", analyzer='word',
ngram_range=(1, 1), max_df=1.0, min_df=1,
max_features=None)
X_train = vect.fit(text_train).transform(text_train)
X_test = vect.transform(text_test)
print("Vocabulary size: {}".format(len(vect.vocabulary_)))
print("")
print("X_train:\n{}".format(repr(X_train)))
print("X_test: \n{}".format(repr(X_test)))
feature_names = vect.get_feature_names()
print("Number of features: {}".format(len(feature_names)))
print("")
param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}
grid =
GridSearchCV(LogisticRegression(penalty='l1',dual=False,max_iter=110,
solver='liblinear'), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Best parameters: ", grid.best_params_)
print("Best estimator: ", grid.best_estimator_)
lr = grid.best_estimator_
lr.predict(X_test)
print("Best Estimator Score: {:.2f}".format(lr.score(X_test, y_test)))
print("")
#creating an empty list for getting overall sentiment
lst = []
# number of elemetns as input
print("")
n = int(input("Enter number of rounds : "))
# iterating till the range
for i in range(0, n):
temp =[]
ele = input("\n Please Enter a sentence to get a sentiment Evaluation.
\n\n")
temp.append(ele)
print("")
print("Review prediction: {}". format(lr.predict(vect.transform(temp))))
print("")
lst.append(ele) # adding the element
print(lst)
print("")
print("Overal prediction: {}". format(lr.predict(vect.transform(lst))))
print("")
I want to get some values between -0 to 1, like when you use Vader SentimentIntensityAnalyzer's polarity_scores.
Here is a code sample of what i want to achieve using SentimentIntensityAnalyzer's polarity_scores.
# import SentimentIntensityAnalyzer class
# from vaderSentiment.vaderSentiment module.
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
# function to print sentiments
# of the sentence.
def sentiment_scores(sentence):
# Create a SentimentIntensityAnalyzer object.
sid_obj = SentimentIntensityAnalyzer()
# polarity_scores method of SentimentIntensityAnalyzer
# oject gives a sentiment dictionary.
# which contains pos, neg, neu, and compound scores.
sentiment_dict = sid_obj.polarity_scores(sentence)
print("")
print("\n Overall sentiment dictionary is : ", sentiment_dict," \n")
print("sentence was rated as: ", sentiment_dict['neg']*100, "% Negative
\n")
print("sentence was rated as: ", sentiment_dict['neu']*100, "% Neutral
\n")
print("sentence was rated as: ", sentiment_dict['pos']*100, "% Positive
\n")
print("Sentence Overall Rated As: ", end = " ")
# decide sentiment as positive, negative and neutral
if sentiment_dict['compound'] >= 0.5:
print("Exellent \n")
elif sentiment_dict['compound'] > 0 and sentiment_dict['compound'] <0.5:
print("Very Good \n")
elif sentiment_dict['compound'] == 0:
print("Good \n")
elif sentiment_dict['compound'] <= -0.5:
print("Average \n")
elif sentiment_dict['compound'] > -0.5 and sentiment_dict['compound']<0:
print("Poor \n")
# Driver code
if __name__ == "__main__" :
while True:
# print("")
sentence= []
sentence = input("\n Please enter a sentence to get a sentimet
evaluation. Enter exit to end progam \n")
if sentence == "exit":
print("\n Program End...........\n")
print("")
break
else:
sentiment_scores(sentence)
You've got a couple options.
1: Label your initial training data with multiple classes according to how negative or positive the example is, instead of just 0 or 1, and perform multi-class classification.
2: As 1 may not be possible, try experimenting with the predict_proba(X), predict_log_proba(X), and decision_function(X) methods and use the results from those to bin your output into the 4 classes according to some hard-coded thresholds. I would recommend using predict_proba as those numbers are directly interpretable as probabilities and is one of the main benefits of logistic regression as opposed to other methods. For example, assuming the 1st (not 0th) column is the "positive" classification
probs = lr.predict_proba(X_test)
labels = np.repeat("very_good", len(probs))
labels[probs[:, 1] < 0.75] = "good"
labels[probs[:, 1] < 0.5] = "average"
labels[probs[:, 1] < 0.25] = "poor"
I'm currently trying to build a simple model for predicting time series. The goal would be to train the model with a sequence so that the model is able to predict future values.
I'm using tensorflow and lstm cells to do so. The model is trained with truncated backpropagation through time. My question is how to structure the data for training.
For example let's assume we want to learn the given sequence:
[1,2,3,4,5,6,7,8,9,10,11,...]
And we unroll the network for num_steps=4.
Option 1
input data label
1,2,3,4 2,3,4,5
5,6,7,8 6,7,8,9
9,10,11,12 10,11,12,13
...
Option 2
input data label
1,2,3,4 2,3,4,5
2,3,4,5 3,4,5,6
3,4,5,6 4,5,6,7
...
Option 3
input data label
1,2,3,4 5
2,3,4,5 6
3,4,5,6 7
...
Option 4
input data label
1,2,3,4 5
5,6,7,8 9
9,10,11,12 13
...
Any help would be appreciated.
I'm just about to learn LSTMs in TensorFlow and try to implement an example which (luckily) tries to predict some time-series / number-series genereated by a simple math-fuction.
But I'm using a different way to structure the data for training, motivated by Unsupervised Learning of Video Representations using LSTMs:
LSTM Future Predictor Model
Option 5:
input data label
1,2,3,4 5,6,7,8
2,3,4,5 6,7,8,9
3,4,5,6 7,8,9,10
...
Beside this paper, I (tried) to take inspiration by the given TensorFlow RNN examples. My current complete solution looks like this:
import math
import random
import numpy as np
import tensorflow as tf
LSTM_SIZE = 64
LSTM_LAYERS = 2
BATCH_SIZE = 16
NUM_T_STEPS = 4
MAX_STEPS = 1000
LAMBDA_REG = 5e-4
def ground_truth_func(i, j, t):
return i * math.pow(t, 2) + j
def get_batch(batch_size):
seq = np.zeros([batch_size, NUM_T_STEPS, 1], dtype=np.float32)
tgt = np.zeros([batch_size, NUM_T_STEPS], dtype=np.float32)
for b in xrange(batch_size):
i = float(random.randint(-25, 25))
j = float(random.randint(-100, 100))
for t in xrange(NUM_T_STEPS):
value = ground_truth_func(i, j, t)
seq[b, t, 0] = value
for t in xrange(NUM_T_STEPS):
tgt[b, t] = ground_truth_func(i, j, t + NUM_T_STEPS)
return seq, tgt
# Placeholder for the inputs in a given iteration
sequence = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS, 1])
target = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS])
fc1_weight = tf.get_variable('w1', [LSTM_SIZE, 1], initializer=tf.random_normal_initializer(mean=0.0, stddev=1.0))
fc1_bias = tf.get_variable('b1', [1], initializer=tf.constant_initializer(0.1))
# ENCODER
with tf.variable_scope('ENC_LSTM'):
lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
initial_state = multi_lstm.zero_state(BATCH_SIZE, tf.float32)
state = initial_state
for t_step in xrange(NUM_T_STEPS):
if t_step > 0:
tf.get_variable_scope().reuse_variables()
# state value is updated after processing each batch of sequences
output, state = multi_lstm(sequence[:, t_step, :], state)
learned_representation = state
# DECODER
with tf.variable_scope('DEC_LSTM'):
lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
state = learned_representation
logits_stacked = None
loss = 0.0
for t_step in xrange(NUM_T_STEPS):
if t_step > 0:
tf.get_variable_scope().reuse_variables()
# state value is updated after processing each batch of sequences
output, state = multi_lstm(sequence[:, t_step, :], state)
# output can be used to make next number prediction
logits = tf.matmul(output, fc1_weight) + fc1_bias
if logits_stacked is None:
logits_stacked = logits
else:
logits_stacked = tf.concat(1, [logits_stacked, logits])
loss += tf.reduce_sum(tf.square(logits - target[:, t_step])) / BATCH_SIZE
reg_loss = loss + LAMBDA_REG * (tf.nn.l2_loss(fc1_weight) + tf.nn.l2_loss(fc1_bias))
train = tf.train.AdamOptimizer().minimize(reg_loss)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
total_loss = 0.0
for step in xrange(MAX_STEPS):
seq_batch, target_batch = get_batch(BATCH_SIZE)
feed = {sequence: seq_batch, target: target_batch}
_, current_loss = sess.run([train, reg_loss], feed)
if step % 10 == 0:
print("#{}: {}".format(step, current_loss))
total_loss += current_loss
print('Total loss:', total_loss)
print('### SIMPLE EVAL: ###')
seq_batch, target_batch = get_batch(BATCH_SIZE)
feed = {sequence: seq_batch, target: target_batch}
prediction = sess.run([logits_stacked], feed)
for b in xrange(BATCH_SIZE):
print("{} -> {})".format(str(seq_batch[b, :, 0]), target_batch[b, :]))
print(" `-> Prediction: {}".format(prediction[0][b]))
Sample output of this looks like this:
### SIMPLE EVAL: ###
# [input seq] -> [target prediction]
# `-> Prediction: [model prediction]
[ 33. 53. 113. 213.] -> [ 353. 533. 753. 1013.])
`-> Prediction: [ 19.74548721 28.3149128 33.11489105 35.06603241]
[ -17. -32. -77. -152.] -> [-257. -392. -557. -752.])
`-> Prediction: [-16.38951683 -24.3657589 -29.49801064 -31.58583832]
[ -7. -4. 5. 20.] -> [ 41. 68. 101. 140.])
`-> Prediction: [ 14.14126873 22.74848557 31.29668617 36.73633194]
...
The model is a LSTM-autoencoder having 2 layers each.
Unfortunately, as you can see in the results, this model does not learn the sequence properly. I might be the case that I'm just doing a bad mistake somewhere, or that 1000-10000 training steps is just way to few for a LSTM. As I said, I'm also just starting to understand/use LSTMs properly.
But hopefully this can give you some inspiration regarding the implementation.
After reading several LSTM introduction blogs e.g. Jakob Aungiers', option 3 seems to be the right one for stateless LSTM.
If your LSTMs need to remember data longer ago than your num_steps, your can train in a stateful way - for a Keras example see Philippe Remy's blog post "Stateful LSTM in Keras". Philippe does not show an example for batch size greater than one, however. I guess that in your case a batch size of four with stateful LSTM could be used with the following data (written as input -> label):
batch #0:
1,2,3,4 -> 5
2,3,4,5 -> 6
3,4,5,6 -> 7
4,5,6,7 -> 8
batch #1:
5,6,7,8 -> 9
6,7,8,9 -> 10
7,8,9,10 -> 11
8,9,10,11 -> 12
batch #2:
9,10,11,12 -> 13
...
By this, the state of e.g. the 2nd sample in batch #0 is correctly reused to continue training with the 2nd sample of batch #1.
This is somehow similar to your option 4, however you are not using all available labels there.
Update:
In extension to my suggestion where batch_size equals the num_steps, Alexis Huet gives an answer for the case of batch_size being a divisor of num_steps, which can be used for larger num_steps. He describes it nicely on his blog.
I believe Option 1 is closest to the reference implementation in /tensorflow/models/rnn/ptb/reader.py
def ptb_iterator(raw_data, batch_size, num_steps):
"""Iterate on the raw PTB data.
This generates batch_size pointers into the raw PTB data, and allows
minibatch iteration along these pointers.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
Yields:
Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
The second element of the tuple is the same data time-shifted to the
right by one.
Raises:
ValueError: if batch_size or num_steps are too high.
"""
raw_data = np.array(raw_data, dtype=np.int32)
data_len = len(raw_data)
batch_len = data_len // batch_size
data = np.zeros([batch_size, batch_len], dtype=np.int32)
for i in range(batch_size):
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i*num_steps:(i+1)*num_steps]
y = data[:, i*num_steps+1:(i+1)*num_steps+1]
yield (x, y)
However, another Option is to select a pointer into your data array randomly for each training sequence.