I'm trying to transfer one of the Imagenet-pretrained architectures from keras.applications to CIFAR-10, but I'm getting a CUDA error (causing my jupyter notebook kernel to crash immediately on the last line when I try to fit my model). What could be going wrong?
Output:
2019-01-10 00:39:40.165264: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-01-10 00:39:40.495421: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX TITAN X major: 5 minor: 2 memoryClockRate(GHz): 1.2405
pciBusID: 0000:01:00.0
totalMemory: 11.93GiB freeMemory: 11.63GiB
2019-01-10 00:39:40.495476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-01-10 00:39:40.819773: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-01-10 00:39:40.819812: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-01-10 00:39:40.819819: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-01-10 00:39:40.820066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/device:GPU:0 with 11256 MB memory) -> physical GPU (device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:01:00.0, compute capability: 5.2)
2019-01-10 00:39:40.844280: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-01-10 00:39:40.844307: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-01-10 00:39:40.844313: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2019-01-10 00:39:40.844317: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2019-01-10 00:39:40.844520: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 11256 MB memory) -> physical GPU (device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:01:00.0, compute capability: 5.2)
[I 00:40:58.262 NotebookApp] Saving file at /Untitled.ipynb
2019-01-10 00:42:56.543392: F tensorflow/stream_executor/cuda/cuda_dnn.cc:542] Check failed: cudnnSetTensorNdDescriptor(handle_.get(), elem_type, nd, dims.data(), strides.data()) == CUDNN_STATUS_SUCCESS (3 vs. 0)batch_descriptor: {count: 32 feature_map_count: 320 spatial: 0 0 value_min: 0.000000 value_max: 0.000000 layout: BatchDepthYX}
Code:
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.preprocessing import image
from keras.layers import Dense, GlobalAveragePooling2D
from keras.models import Model
import keras.utils
import numpy as np
from keras.datasets import cifar10
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# Define model
base_model = InceptionResNetV2(weights='imagenet', include_top=False)
x = base_model.output
print(x.shape)
x = GlobalAveragePooling2D()(x)
x = Dense(1024,activation='relu')(x)
preds = Dense(10,activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=preds)
# Only fine-tune last layer
for layer in base_model.layers:
layer.trainable = False
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
Check the requirements for an input to InceptionResnetV2 network:
It should have exactly 3 inputs channels, and width and height should
be no smaller than 75
And you are trying to fit CIFAR10 images which are 32x32.
Related
I am trying to solve a drift detection problem where I have to find out the drift in high cardinality (10000+) categorical variables such as ip_address, zipcode, cities. I have data points in the order of millions. I have tried the following methods -
chi square test from evidently python package https://github.com/evidentlyai/evidently/blob/main/src/evidently/analyzers/stattests/chisquare_stattest.py
maximum mean discrepancy test with GaussianRBF Kernel from alibi-detecthttps://github.com/SeldonIO/alibi-detect/blob/master/alibi_detect/cd/mmd.py
I have faced the below problems while applying these methods on my data
In chi square test, there is a constraint that we should have same set of categories in both training and inference datasets. This is highly unlikely for the features like ip address and zipcode. There are some data points which are available in training data but not in inference data. For such data points, I don't get observed frequency. I can assume their frequency as 0 as a work around.
But there are data points which have been newly introduced in the inference dataset and don't have their presence in the training dataset. So I would not be able to find out their expected frequency from training dataset. For such data points, I would have 0 in the denominator of the chi square formula and test statistic will be NaN. As a workaround, I can assume their minimum expected frequency equal to 1. But I wonder whether this is the correct way to approach the drift detection.
Moreover, the larger problem is the following -
The nature of these categorical feature variables is such that they can take any possible value from a very very large set of values. I don't have any control over these features taking a value. The users of the system can login from any IP address and from any zipcode. This becomes very difficult to find out the real drift in the data. Methods like chi square test can always give the significant result for such features. Is their any method which can handle such features for drift detection which takes into consideration the high cardinality and the aforementioned nature of the data.
In MMD test with GaussianRBF kernel, we use to calculate pairwise distance between two vectors. X is my training dataset which is having 15 millions records and 10 features. and Y is my inference dataset which is having 10 millions records and 10 features. Now when I perform MMD test on these datasets. I get the following -
a) K_XX = within similarity of X
b) K_YY = within similarity of Y
c) K_XY = cross similarity between X and Y
K_XX will try to generate a matrix (15 million X 15 million). This gives me "ResourceExhaustedError".
ResourceExhaustedError Traceback (most recent call last)
<command-574623167633967> in <module>
1 from alibi_detect.cd import MMDDrift
---> 2 detector = MMDDrift(x_ref=X, backend='tensorflow')
3 res = detector.predict(x=Y)
/databricks/python/lib/python3.8/site-packages/alibi_detect/utils/warnings.py in wrapper(*args, **kwargs)
15 def wrapper(*args, **kwargs):
16 _rename_kwargs(f.__name__, kwargs, aliases)
---> 17 return f(*args, **kwargs)
18 return wrapper
19 return deco
/databricks/python/lib/python3.8/site-packages/alibi_detect/cd/mmd.py in __init__(self, x_ref, backend, p_val, x_ref_preprocessed, preprocess_at_init, update_x_ref, preprocess_fn, kernel, sigma, configure_kernel_from_x_ref, n_permutations, device, input_shape, data_type)
101 if backend == 'tensorflow' and has_tensorflow:
102 kwargs.pop('device', None)
--> 103 self._detector = MMDDriftTF(*args, **kwargs) # type: ignore
104 else:
105 self._detector = MMDDriftTorch(*args, **kwargs) # type: ignore
/databricks/python/lib/python3.8/site-packages/alibi_detect/utils/warnings.py in wrapper(*args, **kwargs)
15 def wrapper(*args, **kwargs):
16 _rename_kwargs(f.__name__, kwargs, aliases)
---> 17 return f(*args, **kwargs)
18 return wrapper
19 return deco
/databricks/python/lib/python3.8/site-packages/alibi_detect/cd/tensorflow/mmd.py in __init__(self, x_ref, p_val, x_ref_preprocessed, preprocess_at_init, update_x_ref, preprocess_fn, kernel, sigma, configure_kernel_from_x_ref, n_permutations, input_shape, data_type)
86 # compute kernel matrix for the reference data
87 if self.infer_sigma or isinstance(sigma, tf.Tensor):
---> 88 self.k_xx = self.kernel(self.x_ref, self.x_ref, infer_sigma=self.infer_sigma)
89 self.infer_sigma = False
90 else:
/databricks/python/lib/python3.8/site-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
/databricks/python/lib/python3.8/site-packages/alibi_detect/utils/tensorflow/kernels.py in call(self, x, y, infer_sigma)
75 y = tf.cast(y, x.dtype)
76 x, y = tf.reshape(x, (x.shape[0], -1)), tf.reshape(y, (y.shape[0], -1)) # flatten
---> 77 dist = distance.squared_pairwise_distance(x, y) # [Nx, Ny]
78
79 if infer_sigma or self.init_required:
/databricks/python/lib/python3.8/site-packages/alibi_detect/utils/tensorflow/distance.py in squared_pairwise_distance(x, y, a_min, a_max)
28 x2 = tf.reduce_sum(x ** 2, axis=-1, keepdims=True)
29 y2 = tf.reduce_sum(y ** 2, axis=-1, keepdims=True)
---> 30 dist = x2 + tf.transpose(y2, (1, 0)) - 2. * x # tf.transpose(y, (1, 0))
31 return tf.clip_by_value(dist, a_min, a_max)
32
ResourceExhaustedError: Exception encountered when calling layer "gaussian_rbf_20" (type GaussianRBF).
OOM when allocating tensor with shape[14335347,14335347] and type float on /job:localhost/replica:0/task:0/device:CPU:0 by allocator cpu [Op:AddV2]
The error seems pretty obvious given the quadratic complexity of MMD. Is their any way to mitigate this issue given the constraints that number of records in millions and high cardinality of categorical features.
I'd like to know if my pytorch code is fully utilizing the GPU SMs. According to this question gpu-util in nvidia-smi only shows how time at least one SM was used.
I also saw that typing nvidia-smi dmon gives the following table:
# gpu pwr gtemp mtemp sm mem enc dec mclk pclk
# Idx W C C % % % % MHz MHz
0 132 71 - 58 18 0 0 6800 1830
Where one would think that sm% would be SM utilization, but I couldn't find any documentation on what sm% means. The number given is exactly the same as gpu-util in nvidia-smi.
Is there any way to check the SM utilization?
On a side note, is there any way to check memory bandwidth utilization?
This question already has an answer here:
TensorFlow Only running on 1/32 of the Training data provided [duplicate]
(1 answer)
Closed 2 years ago.
I'm trying to train a model for mnist.
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
print(x_train.shape)
What i got is (60000, 28, 28), there are 60,000 items in the data set.
Then, I create the model with the following code.
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
However, I got only 1875 items for each epoch.
2020-06-02 04:33:45.706474: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-06-02 04:33:45.706617: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
2020-06-02 04:33:47.437837: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found
2020-06-02 04:33:47.437955: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-06-02 04:33:47.441329: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: DESKTOP-H3BEO7F
2020-06-02 04:33:47.441480: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: DESKTOP-H3BEO7F
2020-06-02 04:33:47.441876: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-06-02 04:33:47.448274: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x27fc6b2c210 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-06-02 04:33:47.448427: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
Epoch 1/5
1875/1875 [==============================] - 1s 664us/step - loss: 0.2971 - accuracy: 0.9140
Epoch 2/5
1875/1875 [==============================] - 1s 661us/step - loss: 0.1421 - accuracy: 0.9582
Epoch 3/5
1875/1875 [==============================] - 1s 684us/step - loss: 0.1068 - accuracy: 0.9675
Epoch 4/5
1875/1875 [==============================] - 1s 695us/step - loss: 0.0868 - accuracy: 0.9731
Epoch 5/5
1875/1875 [==============================] - 1s 682us/step - loss: 0.0764 - accuracy: 0.9762
Process finished with exit code 0
You are using the whole data, no worries!
Due to the Keras documentation, https://github.com/keras-team/keras/blob/master/keras/engine/training.py
when you use model.fit and you do not specify the batch size, it got assigned to 32 by default.
batch_size Integer or NULL. Number of samples per gradient update. If
unspecified, batch_size will default to 32
It means that for each epoch you have 1875 steps, and in each step, your model has taken 32 data examples into the account. And guess what, 1875*32 is equal to 60,000.
I'm training a neural network using Caffe. In the solver.prototxt file, I can set average_loss to print the loss averaged over last N iterations. Is it possible to do so using other values as well ?
For example, I wrote a custom PythonLayer outputting accuracy, and I would like to display the average accuracy over the last N iterations as well.
Thanks,
EDIT: here is the log. The DEBUG lines show the accuracy computed at each image, and every 3 images (average_loss: 3 and display: 3), the accuracy is displayed with the loss. We see that only the last one is displayed, what I want is the average of the 3).
2018-04-24 10:38:06,383 [DEBUG]: Accuracy: 0 / 524288 = 0.000000
I0424 10:38:07.517436 99964 solver.cpp:251] Iteration 0, loss = 1.84883e+06
I0424 10:38:07.517503 99964 solver.cpp:267] Train net output #0: accuracy = 0
I0424 10:38:07.517521 99964 solver.cpp:267] Train net output #1: loss = 1.84883e+06 (* 1 = 1.84883e+06 loss)
I0424 10:38:07.517536 99964 sgd_solver.cpp:106] Iteration 0, lr = 2e-12
I0424 10:38:07.524904 99964 solver.cpp:287] Time: 2.44301s/1iters
2018-04-24 10:38:08,653 [DEBUG]: Accuracy: 28569 / 524288 = 0.054491
2018-04-24 10:38:11,010 [DEBUG]: Accuracy: 22219 / 524288 = 0.042379
2018-04-24 10:38:13,326 [DEBUG]: Accuracy: 168424 / 524288 = 0.321243
I0424 10:38:14.533329 99964 solver.cpp:251] Iteration 3, loss = 1.84855e+06
I0424 10:38:14.533406 99964 solver.cpp:267] Train net output #0: accuracy = 0.321243
I0424 10:38:14.533426 99964 solver.cpp:267] Train net output #1: loss = 1.84833e+06 (* 1 = 1.84833e+06 loss)
I0424 10:38:14.533440 99964 sgd_solver.cpp:106] Iteration 3, lr = 2e-12
I0424 10:38:14.534195 99964 solver.cpp:287] Time: 7.01088s/3iters
2018-04-24 10:38:15,665 [DEBUG]: Accuracy: 219089 / 524288 = 0.417879
2018-04-24 10:38:17,943 [DEBUG]: Accuracy: 202896 / 524288 = 0.386993
2018-04-24 10:38:20,210 [DEBUG]: Accuracy: 0 / 524288 = 0.000000
I0424 10:38:21.393121 99964 solver.cpp:251] Iteration 6, loss = 1.84769e+06
I0424 10:38:21.393190 99964 solver.cpp:267] Train net output #0: accuracy = 0
I0424 10:38:21.393210 99964 solver.cpp:267] Train net output #1: loss = 1.84816e+06 (* 1 = 1.84816e+06 loss)
I0424 10:38:21.393224 99964 sgd_solver.cpp:106] Iteration 6, lr = 2e-12
I0424 10:38:21.393940 99964 solver.cpp:287] Time: 6.85962s/3iters
2018-04-24 10:38:22,529 [DEBUG]: Accuracy: 161180 / 524288 = 0.307426
2018-04-24 10:38:24,801 [DEBUG]: Accuracy: 178021 / 524288 = 0.339548
2018-04-24 10:38:27,090 [DEBUG]: Accuracy: 208571 / 524288 = 0.397818
I0424 10:38:28.297776 99964 solver.cpp:251] Iteration 9, loss = 1.84482e+06
I0424 10:38:28.297843 99964 solver.cpp:267] Train net output #0: accuracy = 0.397818
I0424 10:38:28.297863 99964 solver.cpp:267] Train net output #1: loss = 1.84361e+06 (* 1 = 1.84361e+06 loss)
I0424 10:38:28.297878 99964 sgd_solver.cpp:106] Iteration 9, lr = 2e-12
I0424 10:38:28.298607 99964 solver.cpp:287] Time: 6.9049s/3iters
I0424 10:38:28.331749 99964 solver.cpp:506] Snapshotting to binary proto file snapshot/train_iter_10.caffemodel
I0424 10:38:36.171842 99964 sgd_solver.cpp:273] Snapshotting solver state to binary proto file snapshot/train_iter_10.solverstate
I0424 10:38:43.068686 99964 solver.cpp:362] Optimization Done.
Caffe only averages over average_loss iteration the global loss of the net (the weighted sum of all loss layers) while reporting the output of only the last batch for all other output blobs.
Therefore, if you want your Python layer to report accuracy averaged over several iterations, I suggest you store a buffer SS a member of your layer class and display this aggregated value.
Alternatively, you can implement a "moving average" on top of the accuracy calculation and output this value as a "top".
You can have a "moving average output layer" implemented in python.
This layer can take any number of "bottoms" and output the moving average of these bottoms.
Python code of layer:
import caffe
class MovingAverageLayer(caffe.Layer):
def setup(self, bottom, top):
assert len(bottom) == len(top), "layer must have same number of inputs and outputs"
# average over how many iterations? read from param_str
self.buf_size = int(self.param_str)
# allocate a buffer for each "bottom"
self.buf = [[] for _ in self.bottom]
def reshape(self, bottom, top):
# make sure inputs and outputs have the same size
for i, b in enumerate(bottom):
top[i].reshape(*b.shape)
def forward(self, bottom, top):
# put into buffers
for i, b in enumerate(bottom):
self.buf[i].append(b.data.copy())
if len(self.buf[i]) > self.buf_size:
self.buf[i].pop(0)
# compute average
a = 0
for elem in self.buf[i]:
a += elem
top[i].data[...] = a / len(self.buf[i])
def backward(self, top, propagate_down, bottom):
# this layer does not back prop
pass
How to use this layer in prototxt:
layer {
name: "moving_ave"
type: "Python"
bottom: "accuracy"
top: "av_accuracy"
python_param {
layer: "MovingAverageLayer"
module: "path.to.module"
param_str: "30" # buf size
}
}
See this tutorial for more information.
Original incorrect answer:
Caffe outputs to log whatever the net outputs: loss, accuracy or any other blob that appears as "top" of a layer and is not used as a "bottom" in any other layer.
Therefore, if you want to see accuracy computed by a "Python" layer, simply make sure no other layer uses this accuracy as an input.
I am using two graphic cards and the GeForce gtx980 with 4GB, where I compute my neuronal network is always jumping from 0 to 99% and from 99% to 0% (repeating) at the last line of the pasted shell output.
After around 90seconds it did the first calculation. I put my images one after another into the neuronal network (for-loop). And the following calculations only need 20 seconds (3 epochs) and the GPU jumps between 96 and 100%.
Why is it jumping at the beginning?
I use the flag:
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
Can I be sure that is really using not less megabytes than nvidia-smi -lms 50 is showing me?
2017-08-10 16:33:24.836084: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-10 16:33:24.836100: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-08-10 16:33:25.052501: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-08-10 16:33:25.052861: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 0 with properties:
name: GeForce GTX 980
major: 5 minor: 2 memoryClockRate (GHz) 1.2155
pciBusID 0000:03:00.0
Total memory: 3.94GiB
Free memory: 3.87GiB
2017-08-10 16:33:25.187760: W tensorflow/stream_executor/cuda/cuda_driver.cc:523] A non-primary context 0x8532640 exists before initializing the StreamExecutor. We haven't verified StreamExecutor works with that.
2017-08-10 16:33:25.188006: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:893] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2017-08-10 16:33:25.188291: I tensorflow/core/common_runtime/gpu/gpu_device.cc:940] Found device 1 with properties:
name: GeForce GT 730
major: 3 minor: 5 memoryClockRate (GHz) 0.9015
pciBusID 0000:02:00.0
Total memory: 1.95GiB
Free memory: 1.45GiB
2017-08-10 16:33:25.188312: I tensorflow/core/common_runtime/gpu/gpu_device.cc:832] Peer access not supported between device ordinals 0 and 1
2017-08-10 16:33:25.188319: I tensorflow/core/common_runtime/gpu/gpu_device.cc:832] Peer access not supported between device ordinals 1 and 0
2017-08-10 16:33:25.188329: I tensorflow/core/common_runtime/gpu/gpu_device.cc:961] DMA: 0 1
2017-08-10 16:33:25.188335: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 0: Y N
2017-08-10 16:33:25.188339: I tensorflow/core/common_runtime/gpu/gpu_device.cc:971] 1: N Y
2017-08-10 16:33:25.188348: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 980, pci bus id: 0000:03:00.0)
Epoche: 0001 cost= 0.620101001 time= 115.366318226
Epoche: 0004 cost= 0.335480299 time= 19.4528050423