Machine Learning - Feature Ranking by Algorithms - machine-learning

I have a dataset that contains around 30 features and I want to find out which features contribute the most to the outcome. I have 5 algorithms:
Neural Networks
Logistics
Naive
Random Forest
Adaboost
I read a lot about Information Gain technique and it seems it is independent of the machine learning algorithm used. It is like a preprocess technique.
My question follows, is it best practice to perform feature importance for each algorithm dependently or just use Information Gain. If yes what are the technique used for each ?

First of all, it's worth stressing that you have to perform the feature selection based on the training data only, even if it is a separate algorithm. During testing, you then select the same features from the test dataset.
Some approaches that spring to mind:
Mutual information based feature selection (eg here), independent of the classifier.
Backward or forward selection (see stackexchange question), applicable to any classifier but potentially costly since you need to train/test many models.
Regularisation techniques that are part of the classifier optimisation, eg Lasso or elastic net. The latter can be better in datasets with high collinearity.
Principal components analysis or any other dimensionality reduction technique that groups your features (example).
Some models compute latent variables which you can use for interpretation instead of the original features (e.g. Partial Least Squares or Canonical Correlation Analysis).
Specific classifiers can aid interpretability by providing extra information about the features/predictors, off the top of my head:
Logistic regression: you can obtain a p-value for every feature. In your interpretation you can focus on those that are 'significant' (eg p-value <0.05). (same for two-classes Linear Discriminant Analysis)
Random Forest: can return a variable importance index that ranks the variables from most to least important.
I have a dataset that contains around 30 features and I want to find out which features contribute the most to the outcome.
This will depend on the algorithm. If you have 5 algorithms, you will likely get 5 slightly different answers, unless you perform the feature selection prior to classification (eg using mutual information). One reason is that Random Forests and neural networks would pick up nonlinear relationships while logistic regression wouldn't. Furthermore, Naive Bayes is blind to interactions.
So unless your research is explicitly about these 5 models, I would rather select one model and proceed with it.

Since your purpose is to get some intuition on what's going on, here is what you can do:
Let's start with Random Forest for simplicity, but you can do this with other algorithms too. First, you need to build a good model. Good in the sense that you need to be satisfied with its performance and it should be Robust, meaning that you should use a validation and/or a test set. These points are very important because we will analyse how the model takes its decisions, so if the model is bad you will get bad intuitions.
After having built the model, you can analyse it at two level : For the whole dataset (understanding your process), or for a given prediction. For this task I suggest you to look at the SHAP library which computes features contributions (i.e how much does a feature influences the prediction of my classifier) that can be used for both puproses.
For detailled instructions about this process and more tools, you can look fast.ai excellent courses on the machine learning serie, where lessons 2/3/4/5 are about this subject.
Hope it helps!

Related

feature extraction, selection, and classification concepts

I know that support vector machine, random tree forest and logistic regression are famous machine learning (ML)algorithms for classification.
I'm confused the terminology between a feature extraction, selection and classification.
Does the above ML algorithms are used for extracting features not part of selecting?
Does the ML algorithms include both process of feature extraction and classification?
Does the result of training the ML algorithm (accuracy, specificity, sensitivity..) tell us the result of classifying a disease after the feature extraction?
Regarding your confusion about the 3 terminologies,
Feature extraction: When you want to create new features out of raw data (say you have the transaction_day column but you are only interested in the month, so you create a new column "transaction_month" out of "transaction_day")
Feature selection: You have many features but want to select only the important ones (how many of them is another topic to be studied). This could speed up the process of learning and with the right strategy, you would not sacrifice accuracy in many applications.
Classification: Is a family of supervised (labeled) machine learning that your goal is to assign observations to known classes (for example emails to spam or normal class)
Note: Some of machine learning algorithms like "Lasso" have build-in feature selection but for others, large coefficient of the feature after training usually shows the importance of the feature (read more about recursive feature elimination (rfe))
you may also find a good discussion in this post.

Feature engineering for fraud detection

I'm doing some research into fraud detection for academic purposes.
I' d like to know specifically about techniques for feature selection\engeneering from a transactional dataset.
In more details, given a dataset of transactions (credit card for example), what kind of features are selected to be used on the model and how are they engineered?
All the papers I've come across focus on the model itself (SVM, NN, ...) not really touching on this subject.
Also, if anyone knows of public datasets that are not anonymized - that would also help.
Thanks
Having a good understanding of feature selection/ranking can be a great asset for a data scientist or machine learning practitioner. A good grasp of these methods leads to better performing models, better understanding of the underlying structure and characteristics of the data and leads to better intuition about the algorithms that underlie many machine learning models.
There are in general two reasons why feature selection is used:
1. Reducing the number of features, to reduce overfitting and improve the generalization of models.
2. To gain a better understanding of the features and their relationship to the response variables.
Possible methods:
Univariate feature selection:
Pearson Correlation
Mutual information and maximal information coefficient (MIC)
Distance correlation
Model based ranking
Tree based methods:
Random forest feature importance (Mean decrease impurity, Mean decrease accuracy)
Others:
stability selection
RFE

why using support vector machine?

I have some questions about SVM :
1- Why using SVM? or in other words, what causes it to appear?
2- The state Of art (2017)
3- What improvements have they made?
SVM works very well. In many applications, they are still among the best performing algorithms.
We've seen some progress in particular on linear SVMs, that can be trained much faster than kernel SVMs.
Read more literature. Don't expect an exhaustive answer in this QA format. Show more effort on your behalf.
SVM's are most commonly used for classification problems where labeled data is available (supervised learning) and are useful for modeling with limited data. For problems with unlabeled data (unsupervised learning), then support vector clustering is an algorithm commonly employed. SVM tends to perform better on binary classification problems since the decision boundaries will not overlap. Your 2nd and 3rd questions are very ambiguous (and need lots of work!), but I'll suffice it to say that SVM's have found wide range applicability to medical data science. Here's a link to explore more about this: Applications of Support Vector Machine (SVM) Learning in Cancer Genomics

Advantages of SVM over decion trees and AdaBoost algorithm

I am working on binary classification of data and I want to know the advantages and disadvantages of using Support vector machine over decision trees and Adaptive Boosting algorithms.
Something you might want to do is use weka, which is a nice package that you can use to plug in your data and then try out a bunch of different machine learning classifiers to see how each works on your particular set. It's a well-tread path for people who do machine learning.
Knowing nothing about your particular data, or the classification problem you are trying to solve, I can't really go beyond just telling you random things I know about each method. That said, here's a brain dump and links to some useful machine learning slides.
Adaptive Boosting uses a committee of weak base classifiers to vote on the class assignment of a sample point. The base classifiers can be decision stumps, decision trees, SVMs, etc.. It takes an iterative approach. On each iteration - if the committee is in agreement and correct about the class assignment for a particular sample, then it becomes down weighted (less important to get right on the next iteration), and if the committee is not in agreement, then it becomes up weighted (more important to classify right on the next iteration). Adaboost is known for having good generalization (not overfitting).
SVMs are a useful first-try. Additionally, you can use different kernels with SVMs and get not just linear decision boundaries but more funkily-shaped ones. And if you put L1-regularization on it (slack variables) then you can not only prevent overfitting, but also, you can classify data that isn't separable.
Decision trees are useful because of their interpretability by just about anyone. They are easy to use. Using trees also means that you can also get some idea of how important a particular feature was for making that tree. Something you might want to check out is additive trees (like MART).

How to categorize continuous data?

I have two dependent continuous variables and i want to use their combined values to predict the value of a third binary variable. How do i go about discretizing/categorizing the values? I am not looking for clustering algorithms, i'm specifically interested in obtaining 'meaningful' discrete categories i can subsequently use in in a Bayesian classifier.
Pointers to papers, books, online courses, all very much appreciated!
That is the essence of machine learning and problem one of the most studied problem.
Least-square regression, logistic regression, SVM, random forest are widely used for this type of problem, which is called binary classification.
If your goal is to pragmatically classify your data, several libraries are available, like Scikits-learn in python and weka in java. They have a great documentation.
But if you want to understand what's the intrinsics of machine learning, just search (here or on google) for machine learning resources.
If you wanted to be a real nerd, generate a bunch of different possible discretizations and then train a classifier on it, and then characterize the discretizations by features and then run a classifier on that, and see what sort of discretizations are best!?
In general discretizing stuff is more of an art and having a good understanding of what the input variable ranges mean.

Resources