I'm completely new to opencv and tesseract.
I spent all day trying to make code that would parse game duration from images like that: original image (game duration is in the top left corner)
I came to code that manages to recognize the duration sometimes (about 40% of all cases). Here it is:
try:
from PIL import Image
except ImportError:
import Image
import os
import cv2
import pytesseract
import re
import json
def non_digit_split(s):
return filter(None, re.split(r'(\d+)', s))
def time_to_sec(min, sec):
return (int(min) * 60 + int(sec)).__str__()
def process_img(image_url):
img = cv2.resize(cv2.imread('./images/' + image_url), None, fx=5, fy=5, interpolation=cv2.INTER_CUBIC)
str = pytesseract.image_to_string(img)
if "WIN " in str:
time = list(non_digit_split(str.split("WIN ",1)[1][0:6].strip()))
str = time_to_sec(time[0], time[2])
else:
str = 'Not recognized'
return str
res = {}
img_list = os.listdir('./images')
print(img_list)
for i in img_list:
res[i] = process_img(i)
with open('output.txt', 'w') as file:
file.write(json.dumps(res))
Don't even ask how I came to resizing image, but it helped a little.
I also tried to crop image first like that:
cropped image
but tesseract couldn't find any text here.
I'm sure that the issue I'm trying to solve is pretty easy. Can you please point me the right direction? How should I preprocess it so tesseract will parse it right?
Thanks to #DmitriiZ comment I managed to produce working piece of code.
I made a preprocessor that outputs something like that:
Preprocessed image
Tesseract handles it just fine.
Here is the full code:
try:
from PIL import Image
except ImportError:
import Image
import os
import pytesseract
import json
def is_dark(image):
pixels = image.getdata()
black_thresh = 100
nblack = 0
for pixel in pixels:
if (sum(pixel) / 3) < black_thresh:
nblack += 1
n = len(pixels)
if (nblack / float(n)) > 0.5:
return True
else:
return False
def preprocess(img):
basewidth = 500
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
#Enlarging image
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
#Converting image to black and white
img = img.convert("1", dither=Image.NONE)
return img
def process_img(image_url):
img = Image.open('./images/' + image_url)
#Area we need to crop can be found in one of two different areas,
#depending on which team won. You can replace that block and is_dark()
#function by just img.crop().
top_area = (287, 15, 332, 32)
crop = img.crop(top_area)
if is_dark(crop):
bot_area = (287, 373, 332, 390)
crop = img.crop(bot_area)
img = preprocess(crop)
str = pytesseract.image_to_string(img)
return str
res = {}
img_list = os.listdir('./images')
print(img_list)
for i in img_list:
res[i] = process_img(i)
with open('output.txt', 'w') as file:
file.write(json.dumps(res))
Related
I have an application like this 1 with one display to show real-time basler camera into it . I already figured out how to connect to Basler camera and show video on it but the video is not very smooth.
#Connect to a camera
for i in MainWindow.camera_db.all():
if True:
info = None
for x in pylon.TlFactory.GetInstance().EnumerateDevices():
if x.GetSerialNumber() == i['id']:
info = x
break
if info is not None:
camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateDevice(info))
camera.Open()
if MainWindow.viewer1 is None:
MainWindow.viewer1 = BaslerOpenCVViewer(camera)
logging.warning(f'Camera 1 - serial number: {i["id"]}-OK')
else:
logging.warning('Camera with {} serial number not found'.format(i['id']))
and then I tried
def update_frame(self):
try:
frame = MainWindow.viewer1.get_image()
# frame = cv2.imread('test.jpg')
self.load_display1(frame) # take a frame and show it on MainWindow.display
return frame
except Exception as e:
logging.warning(str(e))
self.time_get_image = QtCore.QTimer(self, interval=1)
self.time_get_image.timeout.connect(self.get_image) #call update_frame function every 1ms to get a real-time video from Basler camera but it's not work well
self.time_get_image.start()
Is there another ways to connect to Basler camera continuous mode and show it on application.
create a label and send the img to displayImage fucnbtion. you will get the image.
from pypylon import pylon
import cv2
camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice())
camera.StartGrabbing(pylon.GrabStrategy_LatestImageOnly)
converter = pylon.ImageFormatConverter()
converter.OutputPixelFormat = pylon.PixelType_BGR8packed
converter.OutputBitAlignment = pylon.OutputBitAlignment_MsbAligned
while camera.IsGrabbing():
grabResult = camera.RetrieveResult(5000, pylon.TimeoutHandling_ThrowException)
# if grabResult.GrabSucceded():
image = converter.Convert(grabResult)
img = image.GetArray()
self.displayImage(img)
cv2.imshow("video", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
cv2.waitKey()
def displayImage(self, img):
qformat = QImage.Format_Indexed8
if len(img.shape) == 3:
if (img.shape[2]) == 4:
qformat = QImage.Format_RGB888
else:
qformat = QImage.Format_RGB888
img = QImage(img, img.shape[1], img.shape[0], qformat)
img = img.rgbSwapped()
self.ui.Camera_lbl.setPixmap(QPixmap.fromImage(img))
self.ui.Camera_lbl.setAlignment(QtCore.Qt.AlignHCenter | QtCore.Qt.AlignHCenter)
You can use the following code
from pypylon import pylon
import cv2
# conecting to the first available camera
camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice())
# Grabing Continusely (video) with minimal delay
camera.StartGrabbing(pylon.GrabStrategy_LatestImageOnly)
converter = pylon.ImageFormatConverter()
# converting to opencv bgr format
converter.OutputPixelFormat = pylon.PixelType_BGR8packed
converter.OutputBitAlignment = pylon.OutputBitAlignment_MsbAligned
while camera.IsGrabbing():
grabResult = camera.RetrieveResult(5000, pylon.TimeoutHandling_ThrowException)
if grabResult.GrabSucceeded():
# Access the image data
image = converter.Convert(grabResult)
img = image.GetArray()
cv2.namedWindow('title', cv2.WINDOW_NORMAL)
cv2.imshow('title', img)
k = cv2.waitKey(1)
if k == 27:
break
grabResult.Release()
# Releasing the resource
camera.StopGrabbing()
cv2.destroyAllWindows()
The code is taken from this github:pypylon/samples/opencv.py
My application is to switch on cam on the client-side, take the frame, perform the ML process on it in the backend and throw it back to the client.
This part of the code (in bold) is throwing error - PngImageFile' object has no attribute 'shape'.
This code line has a problem - frame = imutils.resize(pimg, width=700)
I guess some processing is not in the right format. Please guide
#socketio.on('image')
def image(data_image):
sbuf = io.StringIO()
sbuf.write(data_image)
# decode and convert into image
b = io.BytesIO(base64.b64decode(data_image))
pimg = Image.open(b)
# Process the image frame
frame = imutils.resize(**pimg,** width=700)
frame = cv2.flip(frame, 1)
imgencode = cv2.imencode('.jpg', frame)[1]
# base64 encode
stringData = base64.b64encode(imgencode).decode('utf-8')
b64_src = 'data:image/jpg;base64,'
stringData = b64_src + stringData
# emit the frame back
emit('response_back', stringData)
The problem is that pimg is in PIL image format. While imutils.resize function expects the image in Numpy array format. So, after pimg = Image.open(b) line you need to convert the PIL image to Numpy array like below:
pimg = np.array(pimg)
For this you have to import numpy library like below:
import numpy as np
Try this out. This helped for a similar problem for me.
img_arr = np.array(img.convert("RGB"))
The problem was in the mode of the image. I had to convert it from 'P' to 'RGB'.
print(img)
>> <PIL.PngImagePlugin.PngImageFile image mode=P size=500x281 at 0x7FE836909C10>
save() has a param fp: A filename (string), pathlib.Path object or file object. If I use file object,what is the filename ? I am inconvenient to test this,please help me!
s = io.BytesIO()
pi = Image.frombytes(mode=i.mode, size=i.size, data=i.data)
pi.save(s, format="jpeg")
Does this help?
from io import BytesIO
from PIL import Image, ImageDraw
image = Image.new("RGB", (300, 50))
draw = ImageDraw.Draw(image)
draw.text((0, 0), 'BytesIO')
byte_io = BytesIO()
image.save(byte_io, 'PNG')
with open('test.png', 'wb') as outfile:
outfile.write(byte_io.getvalue())
You still have to do something with the stream like writing to a file after declaring it.
If you want to save the bytes for something:
with io.BytesIO() as output:
image.save(output, 'PNG')
content = output.getvalue()
here is my simple code to display the image in QGraphicsView in pyqt python 3.7. I want an image pixel when the mouse is pressed on a scene or window of QGraphicsView or QGraphicsScene.
Mouse Press Function
Mouse Press Event Handler
def mousePressEvent(self):
p = QtGui.QCursor.pos()
print("pressed here: ", p)
Mouse Press Event caller
self.scene1.mousePressEvent = mousePressEvent
Main Code
import cv2
from PyQt5 import QtCore, QtGui, QtWidgets
from PyQt5.QtGui import *
from PyQt5.QtWidgets import QGraphicsScene, QAction
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(800, 600)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.graphicsView = QtWidgets.QGraphicsView(self.centralwidget)
self.graphicsView.setGeometry(QtCore.QRect(20, 10, 761, 561))
self.graphicsView.setObjectName("graphicsView")
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
# ---- Mouse Press Event Handler ---- #
def mousePressEvent(self):
p = QtGui.QCursor.pos() # Here I want image pixel coordinate (x,y) how we can..?
print("pressed here: ", p)
# ---- Mouse Press Event caller ---- #
self.scene1.mousePressEvent = mousePressEvent
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
# -------------------------------------------------
image = cv2.imread('lena.jpg') # Read image
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width = image.shape # read image size
self.image_disp = QImage(image.data, width, height, QImage.Format_Grayscale8)
# -------------------------------------------------
self.scene1 = QGraphicsScene()
pixMap = QPixmap.fromImage(self.image_disp)
self.scene1.addPixmap(pixMap)
self.graphicsView.setScene(self.scene1)
if __name__ == "__main__":
import sys
app = QtWidgets.QApplication(sys.argv)
MainWindow = QtWidgets.QMainWindow()
ui = Ui_MainWindow()
ui.setupUi(MainWindow)
MainWindow.show()
sys.exit(app.exec_())
You should not modify the class generated by Qt Designer(1), instead create another class that inherits from a widget and use the initial class as an interface.
Do not override the mousePressEvent method using self.scene1.mousePressEvent = mousePressEvent because you are deleting the default implementation, instead you can create a class that inherits from QGraphicsScene or use an event filter, in this case I will use the second method.
To obtain the position of the mouse with respect to the image (QGraphicsPixmapItem), you must use the transformations between the different elements of the Qt Graphics Framework.
import os
import cv2
from PyQt5 import QtCore, QtGui, QtWidgets
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName("MainWindow")
MainWindow.resize(800, 600)
self.centralwidget = QtWidgets.QWidget(MainWindow)
self.centralwidget.setObjectName("centralwidget")
self.graphicsView = QtWidgets.QGraphicsView(self.centralwidget)
self.graphicsView.setGeometry(QtCore.QRect(20, 10, 761, 561))
self.graphicsView.setObjectName("graphicsView")
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow"))
class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):
def __init__(self, parent=None):
super().__init__(parent)
self.setupUi(self)
self.scene = QtWidgets.QGraphicsScene(self)
self.graphicsView.setScene(self.scene)
self.scene.installEventFilter(self)
current_dir = os.path.dirname(os.path.realpath(__file__))
filename = os.path.join(current_dir, "lena.jpg")
image = cv2.imread(filename)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width = image.shape
image_disp = QtGui.QImage(
image.data, width, height, QtGui.QImage.Format_Grayscale8
)
pixMap = QtGui.QPixmap.fromImage(image_disp)
self.pixmap_item = self.scene.addPixmap(pixMap)
def eventFilter(self, obj, event):
if obj is self.scene and event.type() == QtCore.QEvent.GraphicsSceneMousePress:
spf = event.scenePos()
lpf = self.pixmap_item.mapFromScene(spf)
brf = self.pixmap_item.boundingRect()
if brf.contains(lpf):
lp = lpf.toPoint()
print(lp)
return super().eventFilter(obj, event)
if __name__ == "__main__":
import sys
app = QtWidgets.QApplication(sys.argv)
w = MainWindow()
w.show()
sys.exit(app.exec_())
(1) Using the Generated Code
I have a facedetection training code. It gives me some issues and i have no clue why.
I am using a MAC and seems like there is missing something. Can you please advise what should i do?
Thank you in advance
OpenCV(3.4.1) Error: Assertion failed (!empty()) in detectMultiScale, file /tmp/opencv-20180426-73279-16a912g/opencv-3.4.1/modules/objdetect/src/cascadedetect.cpp, line 1698
Traceback (most recent call last):
File "/Users/Desktop/OpenCV-Python-Series-master/src/faces-train.py", line 36, in <module>
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5)
cv2.error: OpenCV(3.4.1) /tmp/opencv-20180426-73279-16a912g/opencv-3.4.1/modules/objdetect/src/cascadedetect.cpp:1698: error: (-215) !empty() in function detectMultiScale
[Finished in 0.421s]
And my code is below.
import cv2
import os
import numpy as np
from PIL import Image
import pickle
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
image_dir = os.path.join(BASE_DIR, "images")
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
recognizer = cv2.face.LBPHFaceRecognizer_create()
current_id = 0
label_ids = {}
y_labels = []
x_train = []
for root, dirs, files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path = os.path.join(root, file)
label = os.path.basename(root).replace(" ", "-").lower()
#print(label, path)
if not label in label_ids:
label_ids[label] = current_id
current_id += 1
id_ = label_ids[label]
#print(label_ids)
#y_labels.append(label) # some number
#x_train.append(path) # verify this image, turn into a NUMPY arrray, GRAY
pil_image = Image.open(path).convert("L") # grayscale
size = (550, 550)
final_image = pil_image.resize(size, Image.ANTIALIAS)
image_array = np.array(final_image, "uint8")
#print(image_array)
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5)
for (x,y,w,h) in faces:
roi = image_array[y:y+h, x:x+w]
x_train.append(roi)
y_labels.append(id_)
#print(y_labels)
#print(x_train)
with open("pickles/face-labels.pickle", 'wb') as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("recognizers/face-trainner.yml")
The assertion which fails indicates that your cascade is not loaded correctly. You can verify it by calling face_cascade.empty() just after the constructor. Please make sure that the path you provided ('cascades/data/haarcascade_frontalface_alt2.xml') is correct. When it points to a not existing file then there is no exception thrown by the constructor so you can easily miss it without calling empty() explicitly.