maxima gradef differentiation - maxima

I try to define the derivative of the standard normal pdf in terms of the function:
φ(x) := exp (-x^2/2)/sqrt(2 * %pi);
gradef(φ(x),-x*φ(x));
but if I type then:
diff(φ(x),x);
I get:
-(x*%e^(-x^2/2))/(sqrt(2)*sqrt(%pi))`
not as I want -x*φ(x).
What I am doing wrong?
Thanks do not
Karl
EDiT :
Unfortunately both suggestions do not work.

I think there's nothing wrong; Maxima is just evaluating phi according to the definition you gave when you call gradef.
I can think of a couple of things to try. (1) Call gradef before defining phi. Then maybe you'll get phi in the output when you call diff. Not sure if that will work.
(2) Define the gradef using a noun expression, i.e., gradef(φ(x),-x*'φ(x)). Notice the single quote mark ' before φ(x); that makes a so-called noun expression in which the argument x may be evaluated but the function φ is not called. Later on in order to evaluate the function, when you want to, you can say ev(someexpression, nouns) to evaluate all noun expressions in someexpression.
EDIT: Here's another idea. This works for me. The previous ideas didn't work because φ gets evaluated too soon; this new idea goes to a greater length to prevent evaluation. Note that the gradef is defined for 'φ(x), so you have to write diff('φ(x), x) in order to apply the gradef.
(%i12) gradef('φ(x), -x*'φ(x));
(%o12) φ(x)
(%i13) diff('φ(x), x);
(%o13) - x φ(x)
The gradef produces a noun expression -x*'φ(x), so to verbify it you can say:
(%i14) ev(%, nouns);
2
x
- --
2
x %e
(%o14) - -----------------
sqrt(2) sqrt(%pi)
Looks like the chain rule is applied as expected:
(%i15) diff('φ(x/a), x);
x
x φ(-)
a
(%o15) - ------
2
a
(%i16) ev(%, nouns);
2
x
- ----
2
2 a
x %e
(%o16) - --------------------
2
sqrt(2) sqrt(%pi) a

Related

Take out common variables using Z3

I have a formlua in DNF form, say:
abcx + abcy + abz
Is there any way to take out the common variables, to get the follwing formula:
ab (cx + cy + z)
A followup question, can it be done recursively, like
ab ( c(x+y) + z)
Sure.. Here's one way:
from z3 import *
a, b, c, x, y, z = Ints('a b c x y z')
print simplify(a*b*c*x + a*b*c*y + a*b*z, hoist_mul=True)
This prints:
a*b*(c*(x + y) + z)
which is exactly what you're looking for.
And for your next question, how did I find about hoist_cmul=True argument? Simply run:
help_simplify()
at your Python prompt, and it'll list you all the options simplify takes.
Note that you should in general not count on what the simplifier will give you. It's mostly heuristic driven, and in the presence of other terms what you get may not match what you expected. (It'll of course still be an equivalent expression.) There's no notion of "simplest" when it comes to arithmetic expressions, and what you consider simple and what z3 considers simple may not necessarily match.

How to output equation without evaluation, but with variables replaced to their values?

I need to make tons of simple computations and present each step in my report with predefined manner:
(for ex i got B=2, C=3):
A=B+12-6/C^2; A=2+12-6/3^2=13.333;
I can get 1st block and answer like this:
B:2$ C:3$
A:'(B+12-6/C^2)$
print("A=",A,"; ","A= ??? =",ev(A, numer) );
and get:
6
A= (- --) + B + 12 ; A= ??? = 13.33333333333333
2
C
What i need instead of '???' to get desired output?
Maxima distinguishes two parts of figuring out a result: evaluation and simplification. Evaluation = substituting one thing (the value) for another thing (a variable or a function). Simplification = applying mathematical identities to get a "simpler", equivalent result.
In your problem, it appears you want to postpone simplification. You can say simp: false to do that. Here's one possible approach. I'll disable simplification, substitute values into the expression, print the substituted expression, and then re-enable simplification to get the final result.
(%i2) expr: A=B+12-6/C^2;
6
(%o2) A = (- --) + B + 12
2
C
(%i3) simp: false $
(%i4) subst ([B = 2, C = 3], expr);
- 2
(%o4) A = 12 + 2 + (- 6) 3
(%i5) simp: true $
(%i6) %o4;
40
(%o6) A = --
3
Note that many operations in Maxima happen by simplification (e.g. adding numbers together), so in general, Maxima will act noticeably different when simp is false. But in this case that's what you want.
EDIT: OP points out that the result after substitution is displayed in a somewhat different from. The reason for this has to do with some obscure implementation details of Maxima. Be that as it may, it's possible to work around that behavior by using the Lisp substitution function SUBST (referenced in Maxima as ?subst) instead of Maxima subst. SUBST is a little different than Maxima subst; the syntax is ?subst(new_thing, old_thing, some_expression). After substituting via SUBST, it's necessary to resimplify explicitly; one way to do that is to say expand(..., 0, 0) (which doesn't expand anything, the only effect is to resimplify).
(%i2) expr: A=B+12-6/C^2;
6
(%o2) A = (- --) + B + 12
2
C
(%i3) simp: false $
(%i4) ?subst (3, C, ?subst (2, B, expr));
6
(%o4) A = (- --) + 2 + 12
2
3
(%i5) simp: true $
(%i6) expand (%o4, 0, 0);
40
(%o6) A = --
3
Since SUBST is has a different effect on the internal representation, it is possible you could create an invalid expression, for some choices of new_thing, old_thing, and some_expression. I won't try to sort that out here.

differentiation dependencies

I want to understand how dependencies in Maxima for differentiation work
for iterated cases.
I tried here:
(%i1) depends([f],[x,y]);
(%o1) [f(x,y)]
(%i2) depends([g],[x,y]);
(%o2) [g(x,y)]
(%i3) depends([x,y],[ε]);
(%o3) [x(ε),y(ε)]
(%i4) diff(g,ε);
(%o4) (g[y])*(y[ε])+(g[x])*(x[ε])
(%i5) h(x,y):=f(x,y)+g(x,y);
(%o5) h(x,y):=f(x,y)+g(x,y)
(%i6) diff(h(x,y),ε);
(%o6) g(x,y)[ε]+f(x,y)[ε]
(%i7) diff(h,ε);
(%o7) 0
In (%o4) I get the total derivative with respect to \epsilon. Whereas in (%o6) the derivatives of x and y with respect to \epsilon are not shown. Why?
And can I make Maxima to show these derivatives in the result?
Dependencies declared by depends are only recognized for symbolic, undefined functions. The dependency is associated with the function name (a symbol).
A function with an actual definition, as defined by := or define, is not recognized. The body of the function could contain any combination of other functions, so the only way to know on which other functions the function depends is to evaluate the function body. That is what is happening when you write diff(h(x, y), ε).

How to pass an array as an argument to a maxima function?

I'm working on creating maxima functions to simplify the del operator on vectors. How can I pass a list/vector to a function in maxima? This works:
(%i7) dot(a,b) := a[1]*b[1]+a[2]*b[2]+a[3]*b[3];
(%o7) dot(a, b) := a b + a b + a b
1 1 2 2 3 3
(%i8) dot(a,b);
2
(%o8) 3 x y - 4 x
but this doesn't:
(%i13) grad(a) := diff(a[1],x) + diff(a[2],y) + diff(a[3],z);
define: argument cannot be an atom or a subscripted memoizing function; found:
a
-- an error. To debug this try: debugmode(true);
Maxima has extremely confusing rules about scope and subscripts. First of all, I'll apologize for that.
My guess is that you already have an array named a by the time you define grad. Try a different name for the argument of grad -- try something which you haven't used yet. Does it work that way?
Anyway, shouldn't the definition be:
grad(a) := [diff(a, x), diff(a, y), diff(a, z)];
??

Maxima - Effect of the commas when not in a function

With Maxima, it is possible to replace an unknown by a value using at() statement.
But this use a list, for the substitution, and the solve() statement don't return a list.
Code:
(%i1) g(x):=x^2+a;
2
(%o1) g(x) := x + a
(%i2) g(x),solve(x=3),a=2;
(%o2) 11
I managed to compute a result using commas, but I can't create a function to do so:
(%i3) f(y) := g(x),solve(x=3),a=y;
(%o3) f(y) := g(x)
(%i4) f(2);
2
(%o4) x + a
Is there a statement for which the commas acts like it acts directly in the line?
Edit:
Actually, it is possible to use at() with solve() to create the function f(), as solve() just return a list of lists. So the code would be:
(%i5) f(y) := at(at(g(x), solve(x=3)[1]), a=y);
(%o5) f(y) := at(at(g(x), solve(x = 3) ), a = y)
(%i6) f(2);
(%o6) 11
Notice the [1] after solve(x=3) in the (%i5). It select the the first item (solution) of list.
I'm not sure what you are trying to accomplish -- probably it would be best if you would back up a couple of steps and describe the larger problem you are trying to solve here.
My best guess as to what you want is that you are trying to use the result of 'solve' to find a value to substitute into some expression. If so you can achieve it like this: f(eq, u) := map (lambda ([e], subst (e, g(u))), solve (eq, x)); where eq is an equation to solve for x and then substitute into g(u). Note that 'solve' can return multiple solutions so that's why I use 'map' to apply something to each solution. Here is an example output:
(%i7) f(eq) := map (lambda ([e], subst (e, g(x))), solve (eq, x));
(%o7) f(eq) := map(lambda([e], subst(e, g(x))), solve(eq, x))
(%i8) solve (x^2 + 2*x + 2);
(%o8) [x = - %i - 1, x = %i - 1]
(%i9) f (x^2 + 2*x + 2);
(%o9) [g(- %i - 1), g(%i - 1)]
Of course you can define 'g' in whatever way is appropriate.
The answer to your specific question (which I believe is not actually very much relevant, but anyway) is to use 'block' to group together expressions to be evaluated. E.g. f(x) := block (...);
Perhaps I'm answering the wrong question. Maybe what you want is ev(foo, bar, baz) -- ev is the function that is actually called when you write foo, bar, baz at the console input prompt. So the function would be written f(y) := ev (g(x), solve(x=3), a=y).
However, bear in mind that there are several different kinds of functionality built into ev, so it is hard to understand (see the documentation for ev). Instead, consider using subst which is much simpler.

Resources