Share storage/volume between worker nodes in Kubernetes? - docker

Is it possible to have a centralized storage/volume that can be shared between two pods/instances of an application that exist in different worker nodes in Kubernetes?
So to explain my case:
I have a Kubernetes cluster with 2 worker nodes. In each one of these I have 1 instance of app X running. This means I have 2 instances of app X running totally at the same time.
Both instances subscribe on the topic topicX, that has 2 partitions, and are part of a consumer group in Apache Kafka called groupX.
As I understand it the message load will be split among the partitions, but also among the consumers in the consumer group. So far so good, right?
So to my problem:
In my whole solution I have a hierarchy division with the unique constraint by country and ID. Each combination of country and ID has a pickle model (python Machine Learning Model), which is stored in a directory accessed by the application. For each combination of a country and ID I receive one message per minute.
At the moment I have 2 countries, so to be able to scale properly I wanted to split the load between two instances of app X, each one handling its own country.
The problem is that with Kafka the messages can be balanced between the different instances, and to access the pickle-files in each instance without know what country the message belongs to, I have to store the pickle-files in both instances.
Is there a way to solve this? I would rather keep the setup as simple as possible so it is easy to scale and add a third, fourth and fifth country later.
Keep in mind that this is an overly simplified way of explaining the problem. The number of instances is much higher in reality etc.

Yes. It's possible if you look at this table any PV (Physical Volume) that supports ReadWriteMany will help you accomplish having the same data store for your Kafka workers. So in summary these:
AzureFile
CephFS
Glusterfs
Quobyte
NFS
VsphereVolume - (works when pods are collocated)
PortworxVolume
In my opinion, NFS is the easiest to implement. Note that Azurefile, Quobyte, and Portworx are paid solutions.

Related

Calling specific instances of a docker service

Not exactly sure how to ask this question or if this is a valid approach. So I am learning all about docker, containers, etc. From what I have read it is great for creating individual different microservices that perform various tasks such as BasketService, CartService, etc, which can each be contained in their own docker container on a vm which I think the URL calls from my UI (If hosted on a linux vm) would be something along the lines of https://MyLinuxVM/BasketService/{controller}.
My Question:
Now lets say I have only 1 service. We will call it MyService, that needs to have multiple instances. So I could have 4 instances i.e: MyService1, MyService2, MyService3, MyService4. All exactly the same. From my client, would the following assumption be correct?
I can call https://MyLinuxVM/MyService1/{controller} or https://MyLinuxVM/MyService2/{controller} to send to a specific container instance?
Why:
I feel this may help explain why I am doing this and possibly help everyone understand my problem in the first place. I have 4 physical devices I need to communicate with. We will call them Device1, Device2, Device3, Device4. Each device has its own IP Address, and its own set of "Tools" connected to it on various ports of the device (10-20 ports per device).
From our UI, the users can click a button that sets some torque values for the tool in their hand by sending the data to the MVC backend which gets sent to the "Correct" background worker/container which will then transform the data into byte[] and pass it along to its dedicated device. I am not sure if I need multiple background workers in a single container, or just a single configurable container with a single background worker that gets deployed multiple times dependent on number of devices we have running in the shop.
I have read a lot of things on creating different worker services that do different tasks, but I need multiple instances of a worker service that can be configured (preferably from db tables) to send to a specific device.
Picture for additional details / visual:

Can I have some keyspaces replicated to some nodes?

I am trying to build multiple API for which I want to store the data with Cassandra. I am designing it as if I would have multiple hosts but, the hosts I envisioned would be of two types: trusted and non-trusted.
Because of that I have certain data which I don't want to end up replicated on a group of the hosts but the rest of the data to be replicated everywhere.
I considered simply making a node for public data and one for protected data but that would require the trusted hosts to run two nodes and it would also complicate the way the API interacts with the data.
I am building it in a docker container also, I expect that there will be frequent node creation/destruction both trusted and not trusted.
I want to know if it is possible to use keyspaces in order to achieve my required replication strategy.
You could have two Datacenters one having your public data and the other the private data. You can configure keyspace replication to only replicate that data to one (or both) DCs. See the docs on replication for NetworkTopologyStrategy
However there are security concerns here since all the nodes need to be able to reach one another via the gossip protocol and also your client applications might need to contact both DCs for different reads and writes.
I would suggest you look into configuring security perhaps SSL for starters and then perhaps internal authentication. Note Kerberos is also supported but this might be too complex for what you need at least now.
You may also consider taking a look at the firewall docs to see what ports are used between nodes and from clients so you know which ones to lock down.
Finally as the above poster mentions, the destruction / creation of nodes too often is not good practice. Cassandra is designed to be able to grow / shrink your cluster while running, but it can be a costly operation as it involves not only streaming data from / to the node being removed / added but also other nodes shuffling around token ranges to rebalance.
You can run nodes in docker containers, however note you need to take care not to do things like several containers all accessing the same physical resources. Cassandra is quite sensitive to io latency for example, several containers sharing the same physical disk might render performance problems.
In short: no you can't.
All nodes in a cassandra cluster from a complete ring where your data will be distributed with your selected partitioner.
You can have multiple keyspaces and authentication and authorziation within cassandra and split your trusted and untrusted data into different keyspaces. Or you an go with two clusters for splitting your data.
From my experience you also should not try to create and destroy cassandra nodes as your usual daily business. Adding and removing nodes is costly and needs to be monitored as your cluster needs to maintain repliaction and so on. So it might be good to split cassandra clusters from your api nodes.

Naming statsd metrics for short lived streams

I am trying to model statistics to submit to statsd/graphite. However what I am monitoring is "session" centric. For example, I have a game that is played in real time. There are multiple instances of a game active on the servers. Each game has multiple (and variable number of) participants. Each instance of a game has a unique ID as does each player.
I want to track (and graph) each player's stats but then roll the metric up for the whole instance and then for all the instances of a game. For example there may be two instances of a game active at a given time. Lets say each has two players in the game
GameTitle.RealTime.VoiceErrors.game_instance_a.player_id_1 10
GameTitle.RealTime.VoiceErrors.game_instance_a.player_id_2 20
GameTitle.RealTime.VoiceErrors.game_instance_b.player_id_3 50
GameTitle.RealTime.VoiceErrors.game_instance_b.player_id_4 70
where game_instances and player_ids are 128 bit numbers
And I want to be able to see that the value of all voice errors for game_instance_a is 30
while all voice errors across the system is 150
Given this I have three questions
What guidance would you have on naming the metrics.
Is it kosher to have metrics that have "dynamic" identifiers as part of the name
What are they scale limits on this. If I had a 100K game instances
with say as many as 1000 players in a game, is this going to kill statsd/graphite?
Thanks!
What guidance would you give on naming the metrics?
Graphite recommends that "Volatile path components should be kept as deep into the hierarchy as possible". This essentially means that if you can push the parts of the metrics that are frequently unique to the end of the "bucket" without impacting your grouping queries you should try to do so.
Here is a great post on using Graphite that includes naming recommendations. And here is another one with additional info from Jason Dixon (an excellent source for Graphite stuff in general).
Is it kosher to have metrics that have "dynamic" identifiers as part of the name?
I usually try to avoid identifiers in the metric names unless they are very low in number (<100). Because Graphite will store a .wsp file for every metric name you'll have a difficult time re-sizing or adjusting the storage settings should you decide to change your configuration. Additionally, the Graphite UI will have a "folder" for every metric name so you can easily make the UI unusable.
In your case, I'd probably graph the total number of game instances, the total number of players, and the number of errors (by type), etc. Additionally, I might try to track players per instance (generally) and maybe errors per instance (again without knowing the actual instance. e.g. GameTitle.RealTime.PerInstance.VoiceErrors) if I had that capability (i.e. state stored per instance in my application).
Logstash, Elastic Search, Kibana
I'd suggest logging this error information with instance and player ids and using logstash to send your logs to elastic search and kibana. Then I'd watch Graphite for real time error and health anomaly detection and use Kibana (and Elastic Search underneath) to dig deeper.
What are the scale limits on this. If I had a 100K game instances with say as many as 1000 players in a game, is this going to kill statsd/graphite?
Statsd should have no problem with this, as it just acts as a -mostly- dumb aggregator. While it does maintain some state internally I don't anticipate a problem.
I don't think you'll have problems with the internal Graphite Whisper Storage itself, as it is just using files and folders. But, as I mentioned above, the Graphite Web UI will be unusable and I think you'll also run the risk of other manageability issues.
Summary
Keep the volatile (dynamic) metric buckets at the end of the name and avoid going above a couple hundred of these.

Erlang clusters

I'm trying to implement a cluster using Erlang as the glue that holds it all together. I like the idea that it creates a fully connected graph of nodes, but upon reading different articles online, it seems as though this doesn't scale well (having a max of 50 - 100 nodes). Did the developers of OTP impose this limitation on purpose? I do know that you can setup nodes to have explicit connections only as well as have hidden nodes, etc. But, it seems as though the default out-of-the-box setup isn't very scalable.
So to the questions:
If you had 5 nodes (A, B, C, D, E) that all had explicit connections such that A-B-C-D-E. Does Erlang/OTP allow A to talk directly to E or does A have to pass messages from B through D to get to E, and thus that's the reason for the fully connected graph? Again, it makes sense but it doesn't scale well from what I've seen.
If one was to try and go for a scalable and fault-tolerant system, what are your options? It seems as though, if you can't create a fully connected graph because you have too many nodes, the next best thing would be to create a tree of some kind. But, this doesn't seem very fault-tolerant because if the root or any parent of children nodes dies, you would lose a significant portion of your cluster.
In looking into supervisors and workers, all of the examples I've seen apply this to processes on a single node. Could it be applied to a cluster of nodes to help implement fault-tolerance?
Can nodes be part of several clusters?
Thanks for your help, if there is a semi-recent website or blogpost (roughly 1-year old) that I've missed, I'd be happy to look at those. But, I've scoured the internet pretty well.
Yes, you can send messages to a process on any remote node in a cluster, for example, by using its process identifier (pid). This is called location transparency. And yes, it scales well (see Riak, CouchDB, RabbitMQ, etc).
Note that one node can run hundred thousands of processes. Erlang has proven to be very scalable and was built for fault tolerance. There are other approaches to build bigger, e.g. SOA approach of CloudI (see comments). You also could build clusters that use hidden nodes if you really really need to.
At the node level you would take a different approach, for example, build identical nodes that are easy to replace if they fail and the work is taken over by the remaining nodes. Check out how Riak handles this (look into riak_core and check the blog post Introducing Riak Core).
Nodes can leave and enter a cluster but cannot be part of multiple clusters at the same time. Connected nodes share one cluster cookie which is used to identify connected nodes. You can set the cookie while the VM is running (see Distributed Erlang).
Read http://learnyousomeerlang.com/ for greater good.
The distribution protocol is about providing robustness, not scalability. What you want to do is to group your cluster into smaller areas and then use connections, which are not distribution in Erlang but in, say, TCP sessions. You could run 5 groups of 10 machines each. This means the 10 machines have seamless Pid distribution: you can call a pid on another machine. But distributing to another group means you can't seamlessly address the group like that.
You generally want some kind of "route reflection" as in BGP.
1) I think you need a direct connection between nodes to communicate between processes. This does, however, mean that you don't need persistent connections between all the nodes if two will never communicate (say if they're only workers, not coordinators).
2) You can create a not-fully-connected graph of erlang nodes. The documentation is hard to find, and comes with problems - you disable the global system which handles global names in the cluster, so you have to do everything by locally registered names, or locally registered names on remote nodes. Or just use Pids, as they work too. To start an erlang node like this, use erl ... -connect_all false .... I hope you know what you're up to, as I couldn't trust myself to do that.
It also turns out that a not-fully-connected graph of erlang nodes is a current research topic. The RELEASE Project is currently working on exactly that, and have come up with a concept of S-groups, which are essentially fully-connected groups. However, nodes can be members of more than one S-group and nodes in separate s-groups don't have to be fully connected but can establish the connections they need on demand to do direct node-to-node communication. It's worth finding presentations of theirs because the research is really interesting.
Another thing worth pointing out is that several people have found that you can get up to 150-200 nodes in a fully-connected cluster. Do you really have a use-case for more nodes than that? Surely 150-200 incredibly beefy computers would do most things you could throw at them, unless you have a ridiculous project to do.
3) While you can't start processes on a different node using gen_server:start_link/3,4, you can certainly call servers on a foreign node very easily. It seems that they've overlooked being able to start servers on foreign nodes, but there's probably good reason for it - such as a ridiculous number of error cases.
4) Try looking at hidden nodes, and at having a not-fully-connected cluster. They should allow you to group nodes as you see fit.
TL;DR: Scaling is hard, let's go shopping.
There are some good answers already, so I'm trying to be simple.
1) No, if A and E are not connected directly, A cannot talk to E. The distribution protocol runs on direct TCP connection - no routing included.
2) I think a tree structure is good enough - trade-offs always exist.
3) There's no 'supervisor for nodes', but erlang:monitor_node is your friend.
4) Yes. A node can talk to nodes from different 'clusters'. In the local node, use erlang:set_cookie(OtherNode, OtherCookie) to access a remote node with a different cookie.
1)
yes. they talk to each other
2) 3) and 4)
Generally speaking, when building a scalable and fault tolerant system, you would want, or more over, need to divide the work load to different "regions" or "clusters". Supervisor/Worker model has this envisioned thus the topology. What you need is a few processes coordinating work between clusters and all workers within one single cluster will talk to each other to balance out within group.
As you can see, with this topology, the "limitation" is not really a limitation as long as you divide your tasks carefully and in a balanced fashion. Personally, I believe a tree like structure for supervisor processes is not avoidable in large scale systems, and this is the practice I'm following. Reasons are vary but boils down to scalability, fault tolerance as fall back policy implementation, maintenance need and portability of the clusters.
So in conclusion,
2) use a tree-like topology for your supervisors. let workers explicitly connect to each other and talk within their own domain with the supervisors.
3) while this is the native designed environment, as I presume, I'm pretty sure a supervisor can talk to a worker on a different machine. I would not suggest this as fault tolerance can be hell in remote worker scenario.
4) you should never let a node be part of two different cluster at the same moment. You can switch it from one cluster to another though.

Is this the right way of building an Erlang network server for multi-client apps?

I'm building a small network server for a multi-player board game using Erlang.
This network server uses a local instance of Mnesia DB to store a session for each connected client app. Inside each client's record (session) stored in this local Mnesia, I store the client's PID and NODE (the node where a client is logged in).
I plan to deploy this network server on at least 2 connected servers (Node A & B).
So in order to allow a Client A who is logged in on Node A to search (query to Mnesia) for a Client B who is logged in on Node B, I replicate the Mnesia session table from Node A to Node B or vise-versa.
After Client A queries the PID and NODE of the Client B, then Client A and B can communicate with each other directly.
Is this the right way of establishing connection between two client apps that are logged-in on two different Erlang nodes?
Creating a system where two or more nodes are perfectly in sync is by definition impossible. In practice however, you might get close enough that it works for your particular problem.
You don't say the exact reason behind running on two nodes, so I'm going to assume it is for scalability. With many nodes, your system will also be more available and fault-tolerant if you get it right. However, the problem could be simplified if you know you only ever will run in a single node, and need the other node as a hot-slave to take over if the master is unavailable.
To establish a connection between two processes on two different nodes, you need some global addressing(user id 123 is pid<123,456,0>). If you also care about only one process running for User A running at a time, you also need a lock or allow only unique registrations of the addressing. If you also want to grow, you need a way to add more nodes, either while your system is running or when it is stopped.
Now, there are already some solutions out there that helps solving your problem, with different trade-offs:
gproc in global mode, allows registering a process under a given key(which gives you addressing and locking). This is distributed to the entire cluster, with no single point of failure, however the leader election (at least when I last looked at it) works only for nodes that was available when the system started. Adding new nodes requires an experimental version of gen_leader or stopping the system. Within your own code, if you know two players are only going to ever talk to each other, you could start them on the same node.
riak_core, allows you to build on top of the well-tested and proved architecture used in riak KV and riak search. It maps the keys into buckets in a fashion that allows you to add new nodes and have the keys redistributed. You can plug into this mechanism and move your processes. This approach does not let you decide where to start your processes, so if you have much communication between them, this will go across the network.
Using mnesia with distributed transactions, allows you to guarantee that every node has the data before the transaction is commited, this would give you distribution of the addressing and locking, but you would have to do everything else on top of this(like releasing the lock). Note: I have never used distributed transactions in production, so I cannot tell you how reliable they are. Also, due to being distributed, expect latency. Note2: You should check exactly how you would add more nodes and have the tables replicated, for example if it is possible without stopping mnesia.
Zookeper/doozer/roll your own, provides a centralized highly-available database which you may use to store the addressing. In this case you would need to handle unregistering yourself. Adding nodes while the system is running is easy from the addressing point of view, but you need some way to have your application learn about the new nodes and start spawning processes there.
Also, it is not necessary to store the node, as the pid contains enough information to send the messages directly to the correct node.
As a cool trick which you may already be aware of, pids may be serialized (as may all data within the VM) to a binary. Use term_to_binary/1 and binary_to_term/1 to convert between the actual pid inside the VM and a binary which you may store in whatever accepts binary data without mangling it in some stupid way.

Resources