How to perform up-sampling using sample() function(py-spark) - machine-learning

I am working on a Binary Classification Machine Learning Problem and I am trying to balance the training set as I have an imbalanced target class variable. I am using Py-Spark for building the model.
Below is the code which is working to balance the data
train_initial, test = new_data.randomSplit([0.7, 0.3], seed = 2018)
train_initial.groupby('label').count().toPandas()
label count
0 0.0 712980
1 1.0 2926
train_new = train_initial.sampleBy('label', fractions={0: 2926./712980, 1: 1.0}).cache()
The above code performs under-sampling, but I think this might lead to loss of information. However, I am not sure how to perform upsampling. I also tried to use sample function as below:
train_up = train_initial.sample(True, 10.0, seed = 2018)
Although, it increases the count of 1 in my data set, it also increases the count of 0 and gives the below result.
label count
0 0.0 7128722
1 1.0 29024
Can someone please help me to achieve up-sampling in py-spark.
Thanks a lot in Advance!!

The problem is that you are oversampling the whole data frame. You should filter the data from the two classes
df_class_0 = df_train[df_train['label'] == 0]
df_class_1 = df_train[df_train['label'] == 1]
df_class_1_over = df_class_1.sample(count_class_0, replace=True)
df_test_over = pd.concat([df_class_0, df_class_1_over], axis=0)
the example comes from : https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets
Please note that there are better way to perform oversampling (e.g. SMOTE)

For anyone trying to do random oversampling on a imbalanced dataset in pyspark. The following code will get you started (in this snippet 0 is the mayority class , and 1 is the class to be oversampled):
df_a = df.filter(df['label'] == 0)
df_b = df.filter(df['label'] == 1)
a_count = df_a.count()
b_count = df_b.count()
ratio = a_count / b_count
df_b_overampled = df_b.sample(withReplacement=True, fraction=ratio, seed=1)
df = df_a.unionAll(df_b_oversampled)

I might be quite late to the rescue here. But this is what I would recommend:
Step 1. Sample only for label = 1
train_1= train_initial.where(col('label')==1).sample(True, 10.0, seed = 2018)
step 2. Merge this data with label = 0 data
train_0=train_initial.where(col('label')==0)
train_final = train_0.union(train_1)
PS: please import the col with
from pyspark.sql.functions import col

Related

Isolation Tree algorithm question about classification

In the part where we create the trees (iTrees) I don't understand why we are using the following classification line of code (much alike as it is in decision tree classification):
def classify_data(data):
label_column = data.values[:, -1]
unique_classes, counts_unique_classes = np.unique(label_column, return_counts=True)
index = counts_unique_classes.argmax()
classification = unique_classes[index]
return classification
We are choosing the last column and an indexed value of the largest unique element? It might make sense for decision trees but I don't understand why we use it in isolation forest?
And the whole iTree code is looking like the following:
def isolation_tree(data,counter=0,
max_depth=50,random_subspace=False):
# End loop if max depth or if isolated
if (counter == max_depth) or data.shape[0]<=1:
classification = classify_data(data)
return classification
else:
# Counter
counter +=1
# Select random feature
split_column = select_feature(data)
# Select random value
split_value = select_value(data,split_column)
# Split data
data_below, data_above = split_data(data,split_column,split_value)
# instantiate sub-tree
question = "{} <= {}".format(split_column,split_value)
sub_tree = {question: []}
# Recursive part
below_answer = isolation_tree(data_below,counter,max_depth=max_depth)
above_answer = isolation_tree(data_above,counter,max_depth=max_depth)
if below_answer == above_answer:
sub_tree = below_answer
else:
sub_tree[question].append(below_answer)
sub_tree[question].append(above_answer)
return sub_tree
Edit: Here is an example of the data and running classify_data:
feat1 feat2
0 3.300000 3.300000
1 -0.519349 0.353008
2 -0.269108 -0.909188
3 -1.887810 -0.555841
4 -0.711432 0.927116
label columns: [ 3.3 0.3530081 -0.90918776 -0.55584138
0.92711613]
unique_classes, counts unique classes: [-0.90918776 -0.55584138
0.3530081 0.92711613 3.3 ] [1 1 1 1 1]
-0.9091877609469025
So I later found out that the classification part was for testing purposes, it is worthless. If you use this code (popular on Medium) please remove the classification function as it serves no purpose.

XGBoost Hyperparameter Tuning using Hyperopt

I am trying to tune my XGBClassifier model. But I am failing to do so. Please find the code below and please help me clean and edit the code.
import csv
from hyperopt import STATUS_OK
from timeit import default_timer as timer
MAX_EVALS = 200
N_FOLDS = 10
def objective(params, n_folds = N_FOLDS):
"""Objective function for Gradient Boosting Machine Hyperparameter Optimization"""
# Keep track of evals
global ITERATION
ITERATION += 1
# Retrieve the subsample if present otherwise set to 1.0
subsample = params['boosting_type'].get('subsample', 1.0)
# Extract the boosting type
params['boosting_type'] = params['boosting_type']['boosting_type']
params['subsample'] = subsample
# Make sure parameters that need to be integers are integers
for parameter_name in ['num_leaves', 'subsample_for_bin',
'min_child_samples']:
params[parameter_name] = int(params[parameter_name])
start = timer()
# Perform n_folds cross validation
cv_results = lgb.cv(params, train_set, num_boost_round = 10000,
nfold = n_folds, early_stopping_rounds = 100,
metrics = 'auc', seed = 50)
run_time = timer() - start
# Extract the best score
best_score = np.max(cv_results['auc-mean'])
# Loss must be minimized
loss = 1 - best_score
# Boosting rounds that returned the highest cv score
n_estimators = int(np.argmax(cv_results['auc-mean']) + 1)
# Write to the csv file ('a' means append)
of_connection = open(out_file, 'a')
writer = csv.writer(of_connection)
writer.writerow([loss, params, ITERATION, n_estimators,
run_time])
# Dictionary with information for evaluation
return {'loss': loss, 'params': params, 'iteration': ITERATION,
'estimators': n_estimators, 'train_time': run_time,
'status': STATUS_OK}
I believe I am doing something wrong in the objective function, as I am trying to edit the objective function of LightGBM.
Please help me.
I created the hgboost library which provides XGBoost Hyperparameter Tuning using Hyperopt.
pip install hgboost
Examples can be found here

how do I use TimeSeriesSplit in xgb.cv

I have trying to run XGBoost for time series analysis. these are my codes which are used else where
xgb1 = xgb.XGBRegressor(learning_rate=0.1,n_estimators=n_estimators,max_depth=max_depth,min_child_weight=min_child_weight,gamma=0,subsample=0.8,colsample_bytree=0.8,
reg_alpha=reg_alpha,objective='reg:squarederror', nthread=4, scale_pos_weight=1, seed=27)
xgb_param = xgb1.get_xgb_params()
dmatrix = xgb.DMatrix(data=X_train, label=y_train)
cv_folds = 5
early_stopping_rounds = 50
cvresults = xgb.cv(dtrain=dmatrix, params = xgb_param,num_boost_round=xgb1.get_params()['n_estimators'], nfold=cv_folds,
metrics='rmse', early_stopping_rounds=early_stopping_rounds)
Obvious issue here is that I want to cross validate timeseries data and hence can't use the cv_folds = 5.
(How) can I use the TimeseriesSplit function within xgb.cv?
thanks,

Tensorflow LSTM PTB Example - Understanding forward and backward pass

Right now I am going through the tensorflow example on LSTMs where they use the PTB dataset to create an LSTM network capable of predicting the next word. I've spent a lot of time trying to understand the code, and have a good understanding for most of it however there is one function which I don't fully grasp:
def run_epoch(session, model, eval_op=None, verbose=False):
"""Runs the model on the given data."""
costs = 0.0
iters = 0
state = session.run(model.initial_state)
fetches = {
"cost": model.cost,
"final_state": model.final_state,
}
if eval_op is not None:
fetches["eval_op"] = eval_op
for step in range(model.input.epoch_size):
feed_dict = {}
for i, (c, h) in enumerate(model.initial_state):
feed_dict[c] = state[i].c
feed_dict[h] = state[i].h
vals = session.run(fetches, feed_dict)
cost = vals["cost"]
state = vals["final_state"]
costs += cost
iters += model.input.num_steps
return np.exp(costs / iters)
My confusion is this: each time through the outerloop I believe we have processed batch_size * num_steps numbers of words, done the forward propagation and done the backward propagation. But, how in the next iteration, for example, do we know to start with the 36th word of each batch if num_steps = 35? I suspect it is some change in an attribute of the class model on each iteration but I cannot figure that out. Thanks for your help.

kNN Consistently Overusing One Label

I am using a kNN to do some classification of labeled images. After my classification is done, I am outputting a confusion matrix. I noticed that one label, bottle was being applied incorrectly more often.
I removed the label and tested again, but then noticed that another label, shoe was being applied incorrectly, but was fine last time.
There should be no normalization, so I'm unsure what is causing this behavior. Testing showed it continued no matter how many labels I removed.
Not totally sure how much code to post, so I'll put some things that should be relevant and pastebin the rest.
def confusionMatrix(classifier, train_DS_X, train_DS_y, test_DS_X, test_DS_y):
# Will output a confusion matrix graph for the predicion
y_pred = classifier.fit(train_DS_X, train_DS_y).predict(test_DS_X)
labels = set(set(train_DS_y) | set(test_DS_y))
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(labels))
plt.xticks(tick_marks, labels, rotation=45)
plt.yticks(tick_marks, labels)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cm = confusion_matrix(test_DS_y , y_pred)
np.set_printoptions(precision=2)
print('Confusion matrix, without normalization')
#print(cm)
plt.figure()
plot_confusion_matrix(cm)
# Normalize the confusion matrix by row (i.e by the number of samples
# in each class)
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('Normalized confusion matrix')
#print(cm_normalized)
plt.figure()
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')
plt.show()
Relevant Code from Main Function:
# Select training and test data
PCA = decomposition.PCA(n_components=.95)
zscorer = ZScoreMapper(param_est=('targets', ['rest']), auto_train=False)
DS = getVoxels (1, .5)
train_DS = DS[0]
test_DS = DS[1]
# Apply PCA and ZScoring
train_DS = processVoxels(train_DS, True, zscorer, PCA)
test_DS = processVoxels(test_DS, False, zscorer, PCA)
print 3*"\n"
# Select the desired features
# If selecting samples or PCA, that must be the only feature
featuresOfInterest = ['pca']
trainDSFeat = selectFeatures(train_DS, featuresOfInterest)
testDSFeat = selectFeatures(test_DS, featuresOfInterest)
train_DS_X = trainDSFeat[0]
train_DS_y = trainDSFeat[1]
test_DS_X = testDSFeat[0]
test_DS_y = testDSFeat[1]
# Optimization of neighbors
# Naively searches for local max starting at numNeighbors
lastScore = 0
lastNeightbors = 1
score = .0000001
numNeighbors = 5
while score > lastScore:
lastScore = score
lastNeighbors = numNeighbors
numNeighbors += 1
#Classification
neigh = neighbors.KNeighborsClassifier(n_neighbors=numNeighbors, weights='distance')
neigh.fit(train_DS_X, train_DS_y)
#Testing
score = neigh.score(test_DS_X,test_DS_y )
# Confusion Matrix Output
neigh = neighbors.KNeighborsClassifier(n_neighbors=lastNeighbors, weights='distance')
confusionMatrix(neigh, train_DS_X, train_DS_y, test_DS_X, test_DS_y)
Pastebin: http://pastebin.com/U7yTs3vs
The issue was in part the result of my axis being mislabeled, when I thought I was removing the faulty label I was in actuality just removing a random label, meaning the faulty data was still being analyzed. Fixing the axis and removing the faulty label which was actually rest yielded:
The code I changed is:
cm = confusion_matrix(test_DS_y , y_pred, labels)
Basically I manually set the ordering based on my list of ordered labels.

Resources