Trying to get blobs using Emgu on Raspberry Pi - image-processing

I have a.NetCore app.
I am using Emgu CV framework for image processing.
I am targetting the Rapsberry Pi using the Raspbian OS.
I am capturing images from the camera.
I am comparing previous and current images. Working out the difference. Applying a threshold. Converting too GrayScale and then to a biary image.
Emgu is not supported on .NetCore.
So trying to make it work myself.
I have made some of the Emgu functions that work on Windows Desktop work on Raspain ARM.
I am trying to get blobs from the binary image.
using the Detect method will give a segmentation fault.
So trying to work with ConnectedComponents.
I have this:
Mat AbsDiffThresholded = new Mat(288, 360, DepthType.Cv8U, 1);
public static byte GetByteConnectedComponentsFrom2DArray( int minBlobSize)
{
VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
double area;
int n;
CvInvoke.FindContours(AbsDiffThresholded, contours, null, RetrType.External, ChainApproxMethod.ChainApproxSimple);
n = contours.Size;
for (var i = 0; i < n; i++)
{
if (CvInvoke.ContourArea(contours[i]) >= minBlobSize)
{
return 1;
}
}
return 0;
}
Which does give me the areas of white pixels.
But, I did to know the density of the white pixels in the area.
If I try to use
var M = CvInvoke.Moments(c);
int cx = (int)(M.M10 / M.M00);
int cy = (int)(M.M01 / M.M00)
it will error on the Cv.Invoke line with segmentation fault.
My think is that coupled with the x,y coordinates i can get establish the ROI and from there i can get the white pixel density.
i can get all to work easily on desktop but like I said I am on Raspian ARM Processor using .NetCore c#
;

Related

Face detection differenet sizes of faces using openCV haarcascade_frontalfacedetection

I'm trying to figure out the best face detection algo for me.I've already tried different methods to do so, but the detection isn't working so well.Im using openCV haarcascase(trying out the different kinds).
My question is:how do i set the size of the face detection so it will detect Big faces(Close up on the person) and also small faces(Zoom out) with the same code.
When I'm using the following command im getting true for facedetecting even when there aren't faces in the image:
faceDetector.detectMultiScale(image, faceDetections, 1.1, 3, 0 | Objdetect.CASCADE_SCALE_IMAGE,
new Size(**50,50**), new Size());
But if I'm using it with new Size(200,200) for example im unable to detect faces in pictures where the faces are "small".
Does anyone have an idea how can I make the detection work for both small and big faces without "inventing" faces that aren't there?
detectMultiScale function has parameters min and max face size. Don't forget to consider you image size before choosing face size. Try smth like that
double max_face_size_percent = 1;
double min_face_size_percent = 0.15;
cv::Size min_face_size = cv::Size(grayImage.size().width * min_face_size_percent,grayImage.size().height * min_face_size_percent);
cv::Size max_face_size = cv::Size(grayImage.size().width * max_face_size_percent, grayImage.size().height * max_face_size_percent);
detector.detectMultiScale(grayImage, detected_faces, (double) scale_factor, 3, 0, min_face_size, max_face_size);
You can choose the biggest face found after that with code like this
double best_face_metric = 0;
std::vector<cv::Rect>::iterator bestFaceIterator = detected_faces.begin();
for (std::vector<cv::Rect>::iterator it = detected_faces.begin(); it != detected_faces.end(); ++it) {
double curr_face_metric = it->width + it->height;
if (curr_face_metric > best_face_metric) {
best_face_metric = curr_face_metric;
bestFaceIterator = it;
}
}
cv::Rect_<double> bestFace(bestFaceIterator->x, bestFaceIterator->y, bestFaceIterator->width,
bestFaceIterator->height);
Or implement any solution of any kind to choose correct faces by yourself

How to determine the distance between upper lip and lower lip by using webcam in Processing?

Where should I start? I can see plenty of face recognition and analysis using Python, Java script but how about Processing ?
I want to determine the distance by using 2 points between upper and lower lip at their highest and lowest point via webcam to use it in further project.
any help would be appreciated
If you want to do it in Processing alone you can use Greg Borenstein's OpenCV for Processing library:
You can start with the Face Detection example
Once you detect a face, you can detect a mouth within the face rectangle using OpenCV.CASCADE_MOUTH.
Once you have mouth detected maybe you can get away with using the mouth bounding box height. For more detail you use OpenCV to threshold that rectangle. Hopefully the open mouth will segment nicely from the rest of the skin. Finding contours should give you lists of points you can work with.
For something a lot more exact, you can use Jason Saragih's CLM FaceTracker, which is available as an OpenFrameworks addon. OpenFrameworks has similarities to Processing. If you do need this sort of accuracy in Processing you can run FaceOSC in the background and read the mouth coordinates in Processing using oscP5
Update
For the first option, using HAAR cascade classifiers, turns out there are a couple of issues:
The OpenCV Processing library can load one cascade and a second instance will override the first.
The OpenCV.CASCADE_MOUTH seems to work better for closed mouths, but not very well with open mouths
To get past the 1st issue, you can use the OpenCV Java API directly, bypassing OpenCV Processing for multiple cascade detection.
There are couple of parameters that can help the detection, such as having idea of the bounding box of the mouth before hand to pass as a hint to the classifier.
I've done a basic test using a webcam on my laptop and measure the bounding box for face and mouth at various distances. Here's an example:
import gab.opencv.*;
import org.opencv.core.*;
import org.opencv.objdetect.*;
import processing.video.*;
Capture video;
OpenCV opencv;
CascadeClassifier faceDetector,mouthDetector;
MatOfRect faceDetections,mouthDetections;
//cascade detections parameters - explanations from Mastering OpenCV with Practical Computer Vision Projects
int flags = Objdetect.CASCADE_FIND_BIGGEST_OBJECT;
// Smallest object size.
Size minFeatureSizeFace = new Size(50,60);
Size maxFeatureSizeFace = new Size(125,150);
Size minFeatureSizeMouth = new Size(30,10);
Size maxFeatureSizeMouth = new Size(120,60);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 4;
//laptop webcam face rectangle
//far, small scale, ~50,60px
//typing distance, ~83,91px
//really close, ~125,150
//laptop webcam mouth rectangle
//far, small scale, ~30,10
//typing distance, ~50,25px
//really close, ~120,60
int mouthHeightHistory = 30;
int[] mouthHeights = new int[mouthHeightHistory];
void setup() {
opencv = new OpenCV(this,320,240);
size(opencv.width, opencv.height);
noFill();
frameRate(30);
video = new Capture(this,width,height);
video.start();
faceDetector = new CascadeClassifier(dataPath("haarcascade_frontalface_alt2.xml"));
mouthDetector = new CascadeClassifier(dataPath("haarcascade_mcs_mouth.xml"));
}
void draw() {
//feed cam image to OpenCV, it turns it to grayscale
opencv.loadImage(video);
opencv.equalizeHistogram();
image(opencv.getOutput(), 0, 0 );
//detect face using raw Java OpenCV API
Mat equalizedImg = opencv.getGray();
faceDetections = new MatOfRect();
faceDetector.detectMultiScale(equalizedImg, faceDetections, searchScaleFactor, minNeighbors, flags, minFeatureSizeFace, maxFeatureSizeFace);
Rect[] faceDetectionResults = faceDetections.toArray();
int faces = faceDetectionResults.length;
text("detected faces: "+faces,5,15);
if(faces >= 1){
Rect face = faceDetectionResults[0];
stroke(0,192,0);
rect(face.x,face.y,face.width,face.height);
//detect mouth - only within face rectangle, not the whole frame
Rect faceLower = face.clone();
faceLower.height = (int) (face.height * 0.65);
faceLower.y = face.y + faceLower.height;
Mat faceROI = equalizedImg.submat(faceLower);
//debug view of ROI
PImage faceImg = createImage(faceLower.width,faceLower.height,RGB);
opencv.toPImage(faceROI,faceImg);
image(faceImg,width-faceImg.width,0);
mouthDetections = new MatOfRect();
mouthDetector.detectMultiScale(faceROI, mouthDetections, searchScaleFactor, minNeighbors, flags, minFeatureSizeMouth, maxFeatureSizeMouth);
Rect[] mouthDetectionResults = mouthDetections.toArray();
int mouths = mouthDetectionResults.length;
text("detected mouths: "+mouths,5,25);
if(mouths >= 1){
Rect mouth = mouthDetectionResults[0];
stroke(192,0,0);
rect(faceLower.x + mouth.x,faceLower.y + mouth.y,mouth.width,mouth.height);
text("mouth height:"+mouth.height+"~px",5,35);
updateAndPlotMouthHistory(mouth.height);
}
}
}
void updateAndPlotMouthHistory(int newHeight){
//shift older values by 1
for(int i = mouthHeightHistory-1; i > 0; i--){
mouthHeights[i] = mouthHeights[i-1];
}
//add new value at the front
mouthHeights[0] = newHeight;
//plot
float graphWidth = 100.0;
float elementWidth = graphWidth / mouthHeightHistory;
for(int i = 0; i < mouthHeightHistory; i++){
rect(elementWidth * i,45,elementWidth,mouthHeights[i]);
}
}
void captureEvent(Capture c) {
c.read();
}
One very imortant note to make: I've copied cascade xml files from the OpenCV Processing library folder (~/Documents/Processing/libraries/opencv_processing/library/cascade-files) to the sketch's data folder. My sketch is OpenCVMouthOpen, so the folder structure looks like this:
OpenCVMouthOpen
├── OpenCVMouthOpen.pde
└── data
├── haarcascade_frontalface_alt.xml
├── haarcascade_frontalface_alt2.xml
├── haarcascade_frontalface_alt_tree.xml
├── haarcascade_frontalface_default.xml
├── haarcascade_mcs_mouth.xml
└── lbpcascade_frontalface.xml
If you don't copy the cascades files and use the code as it is you won't get any errors, but the detection simply won't work. If you want to check, you can do
println(faceDetector.empty())
at the end of the setup() function and if you get false, the cascade has been loaded and if you get true, the cascade hasn't been loaded.
You may need to play with the minFeatureSize and maxFeatureSize values for face and mouth for your setup. The second issue, cascade not detecting wide open mouth very well is tricky. There might be an already trained cascade for open mouths, but you'd need to find it. Otherwise, with this method you may need to train one yourself and that can be a bit tedious.
Nevertheless, notice that there is an upside down plot drawn on the left when a mouth is detected. In my tests I noticed that the height isn't super accurate, but there are noticeable changes in the graph. You may not be able to get a steady mouth height, but by comparing current to averaged previous height values you should see some peaks (values going from positive to negative or vice-versa) which give you an idea of a mouth open/close change.
Although searching through the whole image for a mouth as opposed to a face only can be a bit slower and less accurate, it's a simpler setup. It you can get away with less accuracy and more false positives on your project this could be simpler:
import gab.opencv.*;
import java.awt.Rectangle;
import org.opencv.objdetect.Objdetect;
import processing.video.*;
Capture video;
OpenCV opencv;
Rectangle[] faces,mouths;
//cascade detections parameters - explanations from Mastering OpenCV with Practical Computer Vision Projects
int flags = Objdetect.CASCADE_FIND_BIGGEST_OBJECT;
// Smallest object size.
int minFeatureSize = 20;
int maxFeatureSize = 150;
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 6;
void setup() {
size(320, 240);
noFill();
stroke(0, 192, 0);
strokeWeight(3);
video = new Capture(this,width,height);
video.start();
opencv = new OpenCV(this,320,240);
opencv.loadCascade(OpenCV.CASCADE_MOUTH);
}
void draw() {
//feed cam image to OpenCV, it turns it to grayscale
opencv.loadImage(video);
opencv.equalizeHistogram();
image(opencv.getOutput(), 0, 0 );
Rectangle[] mouths = opencv.detect(searchScaleFactor,minNeighbors,flags,minFeatureSize, maxFeatureSize);
for (int i = 0; i < mouths.length; i++) {
text(mouths[i].x + "," + mouths[i].y + "," + mouths[i].width + "," + mouths[i].height,mouths[i].x, mouths[i].y);
rect(mouths[i].x, mouths[i].y, mouths[i].width, mouths[i].height);
}
}
void captureEvent(Capture c) {
c.read();
}
I was mentioning segmenting/thresholding as well. Here's a rough example using the lower part of a detected face just a basic threshold, then some basic morphological filters (erode/dilate) to cleanup the thresholded image a bit:
import gab.opencv.*;
import org.opencv.core.*;
import org.opencv.objdetect.*;
import org.opencv.imgproc.Imgproc;
import java.awt.Rectangle;
import java.util.*;
import processing.video.*;
Capture video;
OpenCV opencv;
CascadeClassifier faceDetector,mouthDetector;
MatOfRect faceDetections,mouthDetections;
//cascade detections parameters - explanations from Mastering OpenCV with Practical Computer Vision Projects
int flags = Objdetect.CASCADE_FIND_BIGGEST_OBJECT;
// Smallest object size.
Size minFeatureSizeFace = new Size(50,60);
Size maxFeatureSizeFace = new Size(125,150);
// How detailed should the search be. Must be larger than 1.0.
float searchScaleFactor = 1.1f;
// How much the detections should be filtered out. This should depend on how bad false detections are to your system.
// minNeighbors=2 means lots of good+bad detections, and minNeighbors=6 means only good detections are given but some are missed.
int minNeighbors = 4;
//laptop webcam face rectangle
//far, small scale, ~50,60px
//typing distance, ~83,91px
//really close, ~125,150
float threshold = 160;
int erodeAmt = 1;
int dilateAmt = 5;
void setup() {
opencv = new OpenCV(this,320,240);
size(opencv.width, opencv.height);
noFill();
video = new Capture(this,width,height);
video.start();
faceDetector = new CascadeClassifier(dataPath("haarcascade_frontalface_alt2.xml"));
mouthDetector = new CascadeClassifier(dataPath("haarcascade_mcs_mouth.xml"));
}
void draw() {
//feed cam image to OpenCV, it turns it to grayscale
opencv.loadImage(video);
opencv.equalizeHistogram();
image(opencv.getOutput(), 0, 0 );
//detect face using raw Java OpenCV API
Mat equalizedImg = opencv.getGray();
faceDetections = new MatOfRect();
faceDetector.detectMultiScale(equalizedImg, faceDetections, searchScaleFactor, minNeighbors, flags, minFeatureSizeFace, maxFeatureSizeFace);
Rect[] faceDetectionResults = faceDetections.toArray();
int faces = faceDetectionResults.length;
text("detected faces: "+faces,5,15);
if(faces > 0){
Rect face = faceDetectionResults[0];
stroke(0,192,0);
rect(face.x,face.y,face.width,face.height);
//detect mouth - only within face rectangle, not the whole frame
Rect faceLower = face.clone();
faceLower.height = (int) (face.height * 0.55);
faceLower.y = face.y + faceLower.height;
//submat grabs a portion of the image (submatrix) = our region of interest (ROI)
Mat faceROI = equalizedImg.submat(faceLower);
Mat faceROIThresh = faceROI.clone();
//threshold
Imgproc.threshold(faceROI, faceROIThresh, threshold, width, Imgproc.THRESH_BINARY_INV);
Imgproc.erode(faceROIThresh, faceROIThresh, new Mat(), new Point(-1,-1), erodeAmt);
Imgproc.dilate(faceROIThresh, faceROIThresh, new Mat(), new Point(-1,-1), dilateAmt);
//find contours
Mat faceContours = faceROIThresh.clone();
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(faceContours, contours, new Mat(), Imgproc.RETR_EXTERNAL , Imgproc.CHAIN_APPROX_SIMPLE);
//draw contours
for(int i = 0 ; i < contours.size(); i++){
MatOfPoint contour = contours.get(i);
Point[] points = contour.toArray();
stroke(map(i,0,contours.size()-1,32,255),0,0);
beginShape();
for(Point p : points){
vertex((float)p.x,(float)p.y);
}
endShape();
}
//debug view of ROI
PImage faceImg = createImage(faceLower.width,faceLower.height,RGB);
opencv.toPImage(faceROIThresh,faceImg);
image(faceImg,width-faceImg.width,0);
}
text("Drag mouseX to control threshold: " + threshold+
"\nHold 'e' and drag mouseX to control erodeAmt: " + erodeAmt+
"\nHold 'd' and drag mouseX to control dilateAmt: " + dilateAmt,5,210);
}
void mouseDragged(){
if(keyPressed){
if(key == 'e') erodeAmt = (int)map(mouseX,0,width,1,6);
if(key == 'd') dilateAmt = (int)map(mouseX,0,width,1,10);
}else{
threshold = mouseX;
}
}
void captureEvent(Capture c) {
c.read();
}
This could be improved a bit by using YCrCb colour space to segment skin better, but overall you notice that there are quite a few variables to get right which doesn't make this a very flexible setup.
You will be much better results using FaceOSC and reading the values you need in Processing via oscP5. Here is a slightly simplified version of the FaceOSCReceiver Processing example focusing mainly on mouth:
import oscP5.*;
OscP5 oscP5;
// num faces found
int found;
// pose
float poseScale;
PVector posePosition = new PVector();
// gesture
float mouthHeight;
float mouthWidth;
void setup() {
size(640, 480);
frameRate(30);
oscP5 = new OscP5(this, 8338);
oscP5.plug(this, "found", "/found");
oscP5.plug(this, "poseScale", "/pose/scale");
oscP5.plug(this, "posePosition", "/pose/position");
oscP5.plug(this, "mouthWidthReceived", "/gesture/mouth/width");
oscP5.plug(this, "mouthHeightReceived", "/gesture/mouth/height");
}
void draw() {
background(255);
stroke(0);
if(found > 0) {
translate(posePosition.x, posePosition.y);
scale(poseScale);
noFill();
ellipse(0, 20, mouthWidth* 3, mouthHeight * 3);
}
}
// OSC CALLBACK FUNCTIONS
public void found(int i) {
println("found: " + i);
found = i;
}
public void poseScale(float s) {
println("scale: " + s);
poseScale = s;
}
public void posePosition(float x, float y) {
println("pose position\tX: " + x + " Y: " + y );
posePosition.set(x, y, 0);
}
public void mouthWidthReceived(float w) {
println("mouth Width: " + w);
mouthWidth = w;
}
public void mouthHeightReceived(float h) {
println("mouth height: " + h);
mouthHeight = h;
}
// all other OSC messages end up here
void oscEvent(OscMessage m) {
if(m.isPlugged() == false) {
println("UNPLUGGED: " + m);
}
}
On OSX you can simply download the compiled FaceOSC app.
On other operating systems you may need to setup OpenFrameworks, download ofxFaceTracker and compile FaceOSC yourself.
It's really hard to answer general "how do I do this" type questions. Stack Overflow is designed for specific "I tried X, expected Y, but got Z instead" type questions. But I'll try to answer in a general sense:
You need to break your problem down into smaller pieces.
Step 1: Can you get a webcam feed showing in your sketch? Don't worry about the computer vision stuff for a second. Just get the camera connected. Do some research and try something out.
Step 2: Can you detect facial features in that video? You might try doing it yourself, or you might use one of the many libraries listed in the Videos and Vision section of the Processing libraries page.
Step 3: Read the documentation on those libraries. Try them out. You might have to make a bunch of little example sketches using each library until you find one you like. We can't do this for you, as which one is right for you depends on you. If you're confused about something specific we can try to help you, but we can't really help you with picking out a library.
Step 4: Once you've done a bunch of example programs and picked out a library, start working towards your goal. Can you detect facial features using the library? Get just that part working. Once you have that working, can you detect changes like opening or closing a mouth?
Work on one small step at a time. If you get stuck, post an MCVE along with a specific technical question, and we'll go from there. Good luck.

How can i prevent my object detection program from detecting multiple objects of different sizes?

So, here is my situation. I have created a object detection program which is based on color object detection. My program detects the color red and it works perfectly. But here is the problems i am facing:-
Whenever there are more than one red object in the surrounding, my program detects them and it cannot really track one object at that time(i.e it tracks other red objects of various sizes in the background. It shows me the error that "too much noise in the background". As you can see in the "threshold image" attached, it detects the round object (which is my tracking object) and my cap which is red in color. I want my program to detect only my tracking object("which is a round shaped coke cap"). How can i achieve that? Please help me out. I have my engineering design contest in few days and i have to demo my program infront of my lecturers. My program should only be able to detect and track the object which i want. Thanks
My code for the objectdetection program is a little long. So, i am hereby explaining the code as follows- I captured a frame from the webcam frame-converted it to HSV- used HSV Inrange filter to filter out the other colors but red- applied morphological operations on the filtered image. This all goes in my main function
I am using a frame resolution of 1280*720 for my webcam frame. It kind of slows down my program but it was a trade off which i had to do for performing gesture controlled operations. Anyways here is my drawobjectfunction and trackfilteredobjectfunction.
int H_MIN = 0;
int H_MAX = 256;
int S_MIN = 0;
int S_MAX = 256;
int V_MIN = 0;
int V_MAX = 256;
//default capture width and height
const int FRAME_WIDTH = 1280;
const int FRAME_HEIGHT = 720;
//max number of objects to be detected in frame
const int MAX_NUM_OBJECTS=50;
//minimum and maximum object area
const int MIN_OBJECT_AREA = 20*20;
const int MAX_OBJECT_AREA = FRAME_HEIGHT*FRAME_WIDTH/1.5;
void drawObject(int x, int y,Mat &frame){
circle(frame,Point(x,y),20,Scalar(0,255,0),2);
if(y-25>0)
line(frame,Point(x,y),Point(x,y-25),Scalar(0,255,0),2);
else line(frame,Point(x,y),Point(x,0),Scalar(0,255,0),2);
if(y+25<FRAME_HEIGHT)
line(frame,Point(x,y),Point(x,y+25),Scalar(0,255,0),2);
else line(frame,Point(x,y),Point(x,FRAME_HEIGHT),Scalar(0,255,0),2);
if(x-25>0)
line(frame,Point(x,y),Point(x-25,y),Scalar(0,255,0),2);
else line(frame,Point(x,y),Point(0,y),Scalar(0,255,0),2);
if(x+25<FRAME_WIDTH)
line(frame,Point(x,y),Point(x+25,y),Scalar(0,255,0),2);
else line(frame,Point(x,y),Point(FRAME_WIDTH,y),Scalar(0,255,0),2);
putText(frame,intToString(x)+","+intToString(y),Point(x,y+30),1,1,Scalar(0,255,0),2);
}
void trackFilteredObject(int &x, int &y, Mat threshold, Mat &cameraFeed){
Mat temp;
threshold.copyTo(temp);
//these two vectors needed for output of findContours
vector< vector<Point> > contours;
vector<Vec4i> hierarchy;
//find contours of filtered image using openCV findContours function
findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );
//use moments method to find our filtered object
double refArea = 0;
bool objectFound = false;
if (hierarchy.size() > 0) {
int numObjects = hierarchy.size();
//if number of objects greater than MAX_NUM_OBJECTS we have a noisy filter
if(numObjects<MAX_NUM_OBJECTS){
for (int index = 0; index >= 0; index = hierarchy[index][0]) {
Moments moment = moments((cv::Mat)contours[index]);
double area = moment.m00;
//if the area is less than 20 px by 20px then it is probably just noise
//if the area is the same as the 3/2 of the image size, probably just a bad filter
//we only want the object with the largest area so we safe a reference area each
//iteration and compare it to the area in the next iteration.
if(area>MIN_OBJECT_AREA && area<MAX_OBJECT_AREA && area>refArea){
x = moment.m10/area;
y = moment.m01/area;
objectFound = true;
refArea = area;
}else objectFound = false;
}
//let user know you found an object
if(objectFound ==true){
putText(cameraFeed,"Tracking Object",Point(0,50),2,1,Scalar(0,255,0),2);
//draw object location on screen
drawObject(x,y,cameraFeed);}
}else putText(cameraFeed,"TOO MUCH NOISE! ADJUST FILTER",Point(0,50),1,2,Scalar(0,0,255),2);
}
}
Here is the link of the image; as you can see it also detects the red hat in the background along with the red cap of the coke bottle.
My observations:- Here is what i think, to achieve my desired goal of not detecting objects of unknown sizes of red color. I think i have to edit the value of maximum object area which i declared in the above program as (const int MAX_OBJECT_AREA = FRAME_HEIGHT*FRAME_WIDTH/1.5;). I think i have to change this value, that might eliminate the detection of bigger continous red pictures. But also, there is another problem some objects are not completely red in color and they have patches of red and other colors. So, if the detected area is within the range specfied in my program then my program detects those red patches too. What i mean to say is i was wearing a tshirt which has mixed colors and when i tested my program by wearing that tshirt, my program was able to detect the red color out of the other colors. Now, how do i solve this issue?
I think you can try out the following procedure:
obtain a circular kernel having roughly the same area as your object of interest. You can do it like: Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(d, d));
where d is the diameter of the disk.
perform normalized-cross-correlation or convolution of the filtered regions image with this kernel (I think normalized-cross-correlation would be better. And add an empty boarder around the kernel).
the peak of the resulting image should give you the location of the circular region in your filtered image (if you are using normalized-cross-correlation, you'll have to add the shift).
To speed things up, you can perform this at a reduced resolution.
You can filter out non-circular shapes by detecting circles in your thresholded image. OpenCV provides a built-on method to detect circles using Hough transform, more info here. You can take advantage of this function to retain only circles that have a radius in a given range.
Another possibility is to implement connected component labeling (CCL) into your demo program.
I believe that it was removed at some point in verions 2.x of OpenCV, but a basic implementation of the two-pass version is straightforward from the Wikipedia page.
CCL will assign a unique ID for each object after thresholding. You then have to implement matching between the objects at frame (T-1) and objects in frame (T) (for example based on some nearest distance criterion) and possibly trajectory filtering or smoothing, but this would definitely give you some extra-points.

Scripting objects in greyscale images as zero-one array[]

I am trying to script a greyscale object in a captured image as a matrix of 0 1 that represents a block of object pixels (or something like object style scaling), i can imagine the manual processing by looping the object, scaling and writing the matrix according to the grade of color,
however i'm looking for intelligent or open source tools,
.NET are preferred,
[Update, to explain in more details]
The original images are colored, however, i'm converting it into 256 greyscale, then i want to scale it into black or white only, so at the end of the day it's just a black and white picture i want convert it to zero-one matrix,
the following url contains a discussion of how to convert black-white picture to zero-one matrix using a software called imagemagick:
http://studio.imagemagick.org/discourse-server/viewtopic.php?f=1&t=18433
notice the Zero one matrix which demonstrate a dragon face image!, is there any techniques or open source tools that helping me to achieve that?
Something like the following using Emgu OpenCV for .NET would work.
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
using System;
using System.Drawing;
using System.IO;
using (Image<Bgr, Byte> img = new Image<Bgr, Byte>("MyImage.jpg"))
{
Matrix<Int32> matrix = new Matrix<Int32>(img.Width, img.Height);
for (int i = 0; i<img.Height;i++)
{
for (int j = 0; j<img.Width;j++)
{
if (img.Data[i,j,2] == 255 &&
img.Data[i,j,1] == 255 &&
img.Data[i,j,0] == 255)
{
matrix.Data[i,j] = 0;
}
else
{
matrix.Data[i,j] = 1;
}
}
}
TextWriter tw = new StreamWriter("output.txt");
for (int i = 0; i<img.Height;i++)
{
for (int j = 0; j<img.Width;j++)
{
tw.Write(matrix.Data[i,j]);
}
tw.Write(tw.NewLine);
}
}
Note that the snippet above loads colour images and creates a matrix with white as 0 and 1 otherwise.
In order to load and work with grayscale images
the Image<Bgr, Byte> becomes an Image<Gray, Byte> and the comparison simplifies to just
if (img.Data[i,j,0] == 255).
Also to do the thresholding (conversion from colour to grayscale to black and white), you can use Otsu's thresholding using the cvThreshold method, using something like :
int threshold = 150;
Image<Bgr, Byte> img = new Image<Bgr, Byte>("MyImage.jpg");
Image<Gray, Single> img2 = img1.Convert<Gray, Single>();
Image<Gray, Single> img3 = new Image<Gray, Single>(img2.Width, img2.Height);
CvInvoke.cvThreshold(img2, img3, threshold, 255, THRESH.CV_THRESH_OTSU);
Other possible tools include
convert from ImageMagick and pnmoraw from netpbm, as mentioned in the URL you linked, with example snippet convert lib/dragon_face.xbm pbm: | pnmnoraw.
Using PIL (Python Image Library) to iterate through image data and the Python IO functions to write the output data
Using System.Drawing.Bitmap specifically the GetPixel method to iterate through the image data, and C# IO functions to write the output data.

detect blob over other blob

I use OpenCV and cvblob library to play with blob.
Now I want to detect blob in this particular case.
The problem or the difficulty in this case is there are two blobs over a bigger one and other blob that overlap a part of the bigger one.
In cvblob library to detect a blob you must have a binary image.
I think i need to create two or more image to segment color uniform blobs and then binarize them to obtain all the blobs in the image.
How can i do that.
thanks in advance
I'm quite a beginner in OpenCV but I guess that, for that particular case, you should work with cvFindContours with the CV_RETR_EXTERNAL flag (with the CV_RETR_TREE, your yellow blob would be IN the blue one) instead of using cvblob.
It depends if you want to track them or not (cvblob offers a quick and efficient way to track blobs, instead of having to implement camshift).
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* firstContour = cvCreateSeq(CV_SEQ_ELTYPE_POINT, sizeof(CvSeq), sizeof(CvPoint), storage);
cvFindContours(image, storage, &firstContour, sizeof(CvContour), CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// S'il y a un contour
if(firstContour != 0) {
for( CvSeq* c = firstContour; c != NULL; c = c->h_next ) {
for(int i = 0; i < c->total; ++i) {
// Get each point of the current contour
CvPoint* pt = CV_GET_SEQ_ELEM(CvPoint, c, i);
double x = pt->x;
double y = pt->y;
}
}
}
With the information given by the contour you can find easily the centroid, angle and bounding box of your blob.
Tracking these blob might be more difficult as cvblob doesn't like overlapping blobs (as I can see). You may have to implement your own tracking method.

Resources