I want to cluster images based on colour similarity. For that I need a good similarity metric between two 3D histograms. A 3D histogram of an image is just a 3 dimensional space where each axis represents one of the base colours. The range of each axis is 0-255 since this are the possible values of the base colours for each pixel.
The histogram is represented as a 256X256X256 matrix and each entry in the matrix represents the count of pixels with that specific colour in the image. For example:
If the value of the matrix element M[0][0][0] = 1150 it means that there are 1150 black pixels in the image (RGB(0,0,0) represents the colour black)
I am looking for the most sensible similarity metric for this kind of problem. The metric will be used in the clustering algorithm (DBSCAN probably) to evaluate image similarity.
Use the L*a*b* (CIELAB) color space, where euclidean distance is indeed similarity, as it is designed to model human eye perceptions non-linearities.
Related
I have an image that looks like the following. I want to approximate the image content as a summation of Gaussian functions, where the Gaussian means represent the most important points in the image and the covariance represent the degree of spread of the image. Is there any algorithm for this purpose?
I would like to know the difference between contrast stretching and histogram equalization.
I have tried both using OpenCV and observed the results, but I still have not understood the main differences between the two techniques. Insights would be of much needed help.
Lets Define Contrast first,
Contrast is a measure of the “range” of an image; i.e. how spread its intensities are. It has many formal definitions one famous is Michelson’s:
He says contrast = ( Imax - Imin )/( Imax + I min )
Contrast is strongly tied to an image’s overall visual quality.
Ideally, we’d like images to use the entire range of values available
to them.
Contrast Stretching and Histogram Equalisation have the same goal: making the images to use entire range of values available to them.
But they use different techniques.
Contrast Stretching works like mapping
it maps minimum intensity in the image to the minimum value in the range( 84 ==> 0 in the example above )
With the same way, it maps maximum intensity in the image to the maximum value in the range( 153 ==> 255 in the example above )
This is why Contrast Stretching is un-reliable, if there exist only two pixels have 0 and 255 intensity, it is totally useless.
However a better approach is Histogram Equalisation which uses probability distribution. You can learn the steps here
I came across the following points after some reading.
Contrast stretching is all about increasing the difference between the maximum intensity value in an image and the minimum one. All the rest of the intensity values are spread out between this range.
Histogram equalization is about modifying the intensity values of all the pixels in the image such that the histogram is "flattened" (in reality, the histogram can't be exactly flattened, there would be some peaks and some valleys, but that's a practical problem).
In contrast stretching, there exists a one-to-one relationship of the intensity values between the source image and the target image i.e., the original image can be restored from the contrast-stretched image.
However, once histogram equalization is performed, there is no way of getting back the original image.
In Histogram equalization, you want to flatten the histogram into a uniform distribution.
In contrast stretching, you manipulate the entire range of intensity values. Like what you do in Normalization.
Contrast stretching is a linear normalization that stretches an arbitrary interval of the intensities of an image and fits the interval to an another arbitrary interval (usually the target interval is the possible minimum and maximum of the image, like 0 and 255).
Histogram equalization is a nonlinear normalization that stretches the area of histogram with high abundance intensities and compresses the area with low abundance intensities.
I think that contrast stretching broadens the histogram of the image intensity levels, so the intensity around the range of input may be mapped to the full intensity range.
Histogram equalization, on the other hand, maps all of the pixels to the full range according to the cumulative distribution function or probability.
Contrast is the difference between maximum and minimum pixel intensity.
Both methods are used to enhance contrast, more precisely, adjusting image intensities to enhance contrast.
During histogram equalization the overall shape of the histogram
changes, whereas in contrast stretching the overall shape of
histogram remains same.
According to "Lowe, David G. "Distinctive image features from scale-invariant keypoints." International journal of
computer vision 60.2 (2004): 91-110 "
"It is important to avoid all boundary affects in which the descriptor
abruptly changes as a sample shifts smoothly from being within one
histogram to another or from one orientation to another. Therefore,
trilinear interpolation is used to distribute the value of each
gradient sample into adjacent histogram bins. In other words, each
entry into a bin is multiplied by a weight of 1−d for each dimension,
where d is the distance of the sample from the central value of the
bin as measured in units of the histogram bin spacing."
I am calculating the orientation[t] and location of gradient(x,y) which will be in floating point. Currently, I was just
providing the gradient magnitude to 3d histogram values[t][x][y] ( means the lower bound of floating point values of t,x
and y). But, according to paper, I have to distribute the gradient magnitude to adjacent bins. I am not sure about how
to distribute it.
I got my answer on following link:
HOG Trilinear Interpolation of Histogram Bins
I am unsure about this but I want to compute features around interest points computed by surf using RGB color Histogram. I guess the final feature will be 256 dimensional long. However, I am unsure if this is correct.
The dimension of the RGB color histogram is determined by how many bins you use for each channel. The dimension will be 24 (8+8+8) if you use 8 bins for each of them.
Assuming that I have a grayscale (8-bit) image and assume that I have an integral image created from that same image.
Image resolution is 720x576. According to SURF algorithm, each octave is composed of 4 box filters, which are defined by the number of pixels on their side. The
first octave uses filters with 9x9, 15x15, 21x21 and 27x27 pixels. The
second octave uses filters with 15x15, 27x27, 39x39 and 51x51 pixels.The third octave uses filters with 27x27, 51x51, 75x75 and 99x99 pixels. If the image is sufficiently large and I guess 720x576 is big enough (right??!!), a fourth octave is added, 51x51, 99x99, 147x147 and 195x195. These
octaves partially overlap one another to improve the quality of the interpolated results.
// so, we have:
//
// 9x9 15x15 21x21 27x27
// 15x15 27x27 39x39 51x51
// 27x27 51x51 75x75 99x99
// 51x51 99x99 147x147 195x195
The questions are:What are the values in each of these filters? Should I hardcode these values, or should I calculate them? How exactly (numerically) to apply filters to the integral image?
Also, for calculating the Hessian determinant I found two approximations:
det(HessianApprox) = DxxDyy − (0.9Dxy)^2 anddet(HessianApprox) = DxxDyy − (0.81Dxy)^2Which one is correct?
(Dxx, Dyy, and Dxy are Gaussian second order derivatives).
I had to go back to the original paper to find the precise answers to your questions.
Some background first
SURF leverages a common Image Analysis approach for regions-of-interest detection that is called blob detection.
The typical approach for blob detection is a difference of Gaussians.
There are several reasons for this, the first one being to mimic what happens in the visual cortex of the human brains.
The drawback to difference of Gaussians (DoG) is the computation time that is too expensive to be applied to large image areas.
In order to bypass this issue, SURF takes a simple approach. A DoG is simply the computation of two Gaussian averages (or equivalently, apply a Gaussian blur) followed by taking their difference.
A quick-and-dirty approximation (not so dirty for small regions) is to approximate the Gaussian blur by a box blur.
A box blur is the average value of all the images values in a given rectangle. It can be computed efficiently via integral images.
Using integral images
Inside an integral image, each pixel value is the sum of all the pixels that were above it and on its left in the original image.
The top-left pixel value in the integral image is thus 0, and the bottom-rightmost pixel of the integral image has thus the sum of all the original pixels for value.
Then, you just need to remark that the box blur is equal to the sum of all the pixels inside a given rectangle (not originating in the top-lefmost pixel of the image) and apply the following simple geometric reasoning.
If you have a rectangle with corners ABCD (top left, top right, bottom left, bottom right), then the value of the box filter is given by:
boxFilter(ABCD) = A + D - B - C,
where A, B, C, D is a shortcut for IntegralImagePixelAt(A) (B, C, D respectively).
Integral images in SURF
SURF is not using box blurs of sizes 9x9, etc. directly.
What it uses instead is several orders of Gaussian derivatives, or Haar-like features.
Let's take an example. Suppose you are to compute the 9x9 filters output. This corresponds to a given sigma, hence a fixed scale/octave.
The sigma being fixed, you center your 9x9 window on the pixel of interest. Then, you compute the output of the 2nd order Gaussian derivative in each direction (horizontal, vertical, diagonal). The Fig. 1 in the paper gives you an illustration of the vertical and diagonal filters.
The Hessian determinant
There is a factor to take into account the scale differences. Let's believe the paper that the determinant is equal to:
Det = DxxDyy - (0.9 * Dxy)^2.
Finally, the determinant is given by: Det = DxxDyy - 0.81*Dxy^2.
Look at page 17 of this document
http://www.sci.utah.edu/~fletcher/CS7960/slides/Scott.pdf
If you made a code for normal Gaussian 2D convolution, just use the box filter as a Gaussian kernel and the input image will be the same original image not integral image. The results from this method will be same with the one you asked.