Why is the coder after using parallelStream not executed? - java-stream

I intend to execute some time consuming code using using parallelStream. This seems to work well but I have the problem that the subsequent code is not executed:
#PreDestroy
public void tearDown() {
final int mapSize = eventStreamProcessorMap.size();
LOG.info("There are {} subscriptions to be stopped!", mapSize);
final long start = System.currentTimeMillis();
LocalTime time = LocalTime.now();
final AtomicInteger count = new AtomicInteger();
eventStreamProcessorMap.entrySet().parallelStream().forEach(entry -> {
final Subscription sub = entry.getKey();
final StreamProcessor processor = entry.getValue();
LOG.info("Attempting to stop subscription {} of {} with id {} at {}", count.incrementAndGet(), mapSize, sub.id(), LocalTime.now().format(formatter));
LOG.info("Stopping processor...");
processor.stop();
LOG.info("Processor stopped.");
LOG.info("Removing subscription...");
eventStreamProcessorMap.remove(sub);
LOG.info("Subscription {} removed.", sub.id());
LOG.info("Finished stopping processor {} with subscription {} in ParallelStream at {}: ", processor, sub, LocalTime.now().format(formatter));
LOG.info(String.format("Duration: %02d:%02d:%02d:%03d (hh:mm:ss:SSS)",
TimeUnit.MILLISECONDS.toHours(System.currentTimeMillis() - start),
TimeUnit.MILLISECONDS.toMinutes(System.currentTimeMillis() - start)%60,
TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - star0)%60,
TimeUnit.MILLISECONDS.toMillis(System.currentTimeMillis() - start)%1000));
LOG.info("--------------------------------------------------------------------------");
});
LOG.info("Helloooooooooooooo?????");
LOG.info(String.format("Overall shutdown duration: %02d:%02d:%02d:%03d (hh:mm:ss:SSS)",
TimeUnit.MILLISECONDS.toHours(System.currentTimeMillis() - start),
TimeUnit.MILLISECONDS.toMinutes(System.currentTimeMillis() - start)%60,
TimeUnit.MILLISECONDS.toSeconds(System.currentTimeMillis() - start)%60,
TimeUnit.MILLISECONDS.toMillis(System.currentTimeMillis() - start)%1000));
LOG.info("xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx");
}
The code after the parallelStream processing is not executed:
LOG.info("Helloooooooooooooo?????");
does never appear in the log. Why not?

This is caused by eventStreamProcessorMap.remove(sub); (which you have removed from the code now with the edit that you made). You are streaming over a Map entrySet (eventStreamProcessorMap) and removing elements from it - this is not allowed, that is why you get that ConcurrentModificationException.
If you really want to remove while iterating, use an Iterator or map.entrySet().removeIf(x -> {...})

Related

Test using StepVerifier blocks when using Spring WebClient with retry

EDIT: here https://github.com/wujek-srujek/reactor-retry-test is a repository with all the code.
I have the following Spring WebClient code to POST to a remote server (Kotlin code without imports for brevity):
private val logger = KotlinLogging.logger {}
#Component
class Client(private val webClient: WebClient) {
companion object {
const val maxRetries = 2L
val firstBackOff = Duration.ofSeconds(5L)
val maxBackOff = Duration.ofSeconds(20L)
}
fun send(uri: URI, data: Data): Mono<Void> {
return webClient
.post()
.uri(uri)
.contentType(MediaType.APPLICATION_JSON)
.bodyValue(data)
.retrieve()
.toBodilessEntity()
.doOnSubscribe {
logger.info { "Calling backend, uri: $uri" }
}
.retryExponentialBackoff(maxRetries, firstBackOff, maxBackOff, jitter = false) {
logger.debug { "Call to $uri failed, will retry (#${it.iteration()} of max $maxRetries)" }
}
.doOnError {
logger.error { "Call to $uri with $maxRetries retries failed with $it" }
}
.doOnSuccess {
logger.info { "Call to $uri succeeded" }
}
.then()
}
}
(It returns an empty Mono as we don't expect an answer, nor do we care about it.)
I would like to test 2 cases, and one of them is giving me headaches, namely the one in which I want to test that all the retries have been fired. We are using MockWebServer (https://github.com/square/okhttp/tree/master/mockwebserver) and the StepVerifier from reactor-test. (The test for success is easy and doesn't need any virtual time scheduler magic, and works just fine.) Here is the code for the failing one:
#JsonTest
#ContextConfiguration(classes = [Client::class, ClientConfiguration::class])
class ClientITest #Autowired constructor(
private val client: Client
) {
lateinit var server: MockWebServer
#BeforeEach
fun `init mock server`() {
server = MockWebServer()
server.start()
}
#AfterEach
fun `shutdown server`() {
server.shutdown()
}
#Test
fun `server call is retried and eventually fails`() {
val data = Data()
val uri = server.url("/server").uri()
val responseStatus = HttpStatus.INTERNAL_SERVER_ERROR
repeat((0..Client.maxRetries).count()) {
server.enqueue(MockResponse().setResponseCode(responseStatus.value()))
}
StepVerifier.withVirtualTime { client.send(uri, data) }
.expectSubscription()
.thenAwait(Duration.ofSeconds(10)) // wait for the first retry
.expectNextCount(0)
.thenAwait(Duration.ofSeconds(20)) // wait for the second retry
.expectNextCount(0)
.expectErrorMatches {
val cause = it.cause
it is RetryExhaustedException &&
cause is WebClientResponseException &&
cause.statusCode == responseStatus
}
.verify()
// assertions
}
}
I am using withVirtualTime because I don't want the test to take nearly seconds.
The problem is that the test blocks indefinitely. Here is the (simplified) log output:
okhttp3.mockwebserver.MockWebServer : MockWebServer[51058] starting to accept connections
Calling backend, uri: http://localhost:51058/server
MockWebServer[51058] received request: POST /server HTTP/1.1 and responded: HTTP/1.1 500 Server Error
Call to http://localhost:51058/server failed, will retry (#1 of max 2)
Calling backend, uri: http://localhost:51058/server
MockWebServer[51058] received request: POST /server HTTP/1.1 and responded: HTTP/1.1 500 Server Error
Call to http://localhost:51058/server failed, will retry (#2 of max 2)
As you can see, the first retry works, but the second one blocks. I don't know how to write the test so that it doesn't happen. To make matters worse, the client will actually use jitter, which will make the timing hard to anticipate.
The following test using StepVerifier but without WebClient works fine, even with more retries:
#Test
fun test() {
StepVerifier.withVirtualTime {
Mono
.error<RuntimeException>(RuntimeException())
.retryExponentialBackoff(5,
Duration.ofSeconds(5),
Duration.ofMinutes(2),
jitter = true) {
println("Retrying")
}
.then()
}
.expectSubscription()
.thenAwait(Duration.ofDays(1)) // doesn't matter
.expectNextCount(0)
.expectError()
.verify()
}
Could anybody help me fix the test, and ideally, explain what is wrong?
This is a limitation of virtual time and the way the clock is manipulated in StepVerifier. The thenAwait methods are not synchronized with the underlying scheduling (that happens for example as part of the retryBackoff operation). This means that the operator submits retry tasks at a point where the clock has already been advanced by one day. So the second retry is scheduled for + 1 day and 10 seconds, since the clock is at +1 day. After that, the clock is never advanced so the additional request is never made to MockWebServer.
Your case is made even more complicated in the sense that there is an additional component involved, the MockWebServer, that still works "in real time".
Though advancing the virtual clock is a very quick operation, the response from the MockWebServer still goes through a socket and thus has some amount of latency to the retry scheduling, which makes things more complicated from the test writing perspective.
One possible solution to explore would be to externalize the creation of the VirtualTimeScheduler and tie advanceTimeBy calls to the mockServer.takeRequest(), in a parallel thread.

Jenkins pipeline - custom timeout behavior

I need custom behavior for the timeout function. For example, when I use:
timeout(time: 10, unit: 'MINUTES') {
doSomeStuff()
}
it terminates the doSomeStuff() function.
What I want to achieve is not to terminate the execution of the function, but to call another function every 10 minutes until doSomeStuff() is done with executing.
I can't use the Build-timeout Plugin from Jenkins since I need to apply this behavior to pipelines.
Any help would be appreciated.
In case anyone else has the same issue: After some research, the only way that came to my mind to solve my problem was to modify the notification plugin for the jenkins pipeline, in a way to add a new field that would contain value of time (in minutes) to delay the invoking of the url. In the code itself, where the url was invoked, i put those lines in a new thread and let that thread sleep for the needed amount of time before executing the remaining code. Something like this:
#Override
public void onStarted(final Run r, final TaskListener listener) {
HudsonNotificationProperty property = (HudsonNotificationProperty) r.getParent().getProperty(HudsonNotificationProperty.class);
int invokeUrlTimeout = 0;
if (property != null && !property.getEndpoints().isEmpty()){
invokeUrlTimeout = property.getEndpoints().get(0).getInvokeUrlTimeout();
}
int finalInvokeUrlTimeout = invokeUrlTimeout;
new Thread(() -> {
sleep(finalInvokeUrlTimeout * 60 * 1000);
Executor e = r.getExecutor();
Phase.QUEUED.handle(r, TaskListener.NULL, e != null ? System.currentTimeMillis() - e.getTimeSpentInQueue() : 0L);
Phase.STARTED.handle(r, listener, r.getTimeInMillis());
}).start();
}
Maybe not the best solution but it works for me, and I hope it helps other people too.

Reactor Flux and asynchronous processing

I am trying to learn Reactor but I am having a lot of trouble with it. I wanted to do a very simple proof of concept where I simulate calling a slow down stream service 1 or more times. If you use reactor and stream the response the caller doesn't have to wait for all the results.
So I created a very simple controller but it is not behaving like I expect. When the delay is "inside" my flatMap (inside the method I call) the response is not returned until everything is complete. But when I add a delay after the flatMap the data is streamed.
Why does this code result in a stream of JSON
#GetMapping(value = "/test", produces = { MediaType.APPLICATION_STREAM_JSON_VALUE })
Flux<HashMap<String, Object>> customerCards(#PathVariable String customerId) {
Integer count = service.getCount(customerId);
return Flux.range(1, count).
flatMap(k -> service.doRestCall(k)).delayElements(Duration.ofMillis(5000));
}
But this does not
#GetMapping(value = "/test2", produces = { MediaType.APPLICATION_STREAM_JSON_VALUE })
Flux<HashMap<String, Object>> customerCards(#PathVariable String customerId) {
Integer count = service.getCount(customerId);
return Flux.range(1, count).
flatMap(k -> service.doRestCallWithDelay(k));
}
It think I am missing something very basic of the reactor API. On that note. can anyone point to a good book or tutorial on reactor? I can't seem to find anything good to learn this.
Thanks
The code inside the flatMap runs on the main thread (that is the thread the controller runs). As a result the whole process is blocked and the method doesnt return immediately. Have in mind that Reactor doesnt impose a particular threading model.
On the contrary, according to the documentation, in the delayElements method signals are delayed and continue on the parallel default Scheduler. That means that the main thread is not blocked and returns immediately.
Here are two corresponding examples:
Blokcing code:
Flux.range(1, 500)
.map(i -> {
//blocking code
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " - Item : " + i);
return i;
})
.subscribe();
System.out.println("main completed");
Result:
main - Item : 1
main - Item : 2
main - Item : 3
...
main - Item : 500
main completed
Non-blocking code:
Flux.range(1, 500)
.delayElements(Duration.ofSeconds(1))
.subscribe(i -> {
System.out.println(Thread.currentThread().getName() + " - Item : " + i);
});
System.out.println("main Completed");
//sleep main thread in order to be able to print the println of the flux
try {
Thread.sleep(30000);
} catch (InterruptedException e) {
e.printStackTrace();
}
Result:
main Completed
parallel-1 - Item : 1
parallel-2 - Item : 2
parallel-3 - Item : 3
parallel-4 - Item : 4
...
Here is the project reactor reference guide
"delayElements" method only delay flux element by a given duration, see javadoc for more details
I think you should post details about methods "service.doRestCallWithDelay(k)" and "service.doRestCall(k)" if you need more help.

Dart Unit Test - Always passing

All,
Here is a unit test for checking the size of a collection
main() {
test("Resource Manager Image Load", () {
ResourceManager rm = new ResourceManager();
int WRONG_SIZE = 1000000;
rm.loadImageManifest("data/rm/test_images.yaml").then((_){
print("Length="+ rm.images.length.toString()); // PRINTS '6' - WHICH IS CORRECT
expect(rm.images, hasLength(WRONG_SIZE));
});
});
}
I am running this from a browser (client-side Dart libraries are in use) and it ALWAYS passes, no matter what the value of WRONG_SIZE.
Help appreciated.
In such simple cases you can just return the future. The unit test framework recognizes it and waits for the future to complete. This also works for setUp/tearDown.
main() {
test("Resource Manager Image Load", () {
ResourceManager rm = new ResourceManager();
int WRONG_SIZE = 1000000;
return rm.loadImageManifest("data/rm/test_images.yaml").then((_) {
//^^^^
print("Length="+ rm.images.length.toString()); // PRINTS '6' - WHICH IS CORRECT
expect(rm.images, hasLength(WRONG_SIZE));
});
});
}
The problem is that your code returns a Future, and your test completes before the code in the Future has finished, so there's nothing to cause it to fail.
Check out the Asynchronous Tests section on the Dart site. There are methods like expectAsync that allow the future to be passed to the test framework so that it can wait for them to complete and handle the result correctly.
Here's an example (note the expect call is now inside the function passed to expectAsync)
test('callback is executed once', () {
// wrap the callback of an asynchronous call with [expectAsync] if
// the callback takes 0 arguments...
var timer = Timer.run(expectAsync(() {
int x = 2 + 3;
expect(x, equals(5));
}));
});

how to make executor service wait until all thread finish

i use executor service to launch multiple thread to sent request to api and get data back. sometimes i see some threads haven't finished their job yet, the service kill that thread already, how can i force the service to wait until the thread finish their job?
here is my code:
ExecutorService pool = Executors.newFixedThreadPool(10);
List<Future<List<Book>>> futures = Lists.newArrayList();
final ObjectMapper mapper1 = new ObjectMapper();
for (final Author a : authors) {
futures.add(pool.submit(new Callable<List<Book>>() {
#Override
public List<Book> call() throws Exception {
String urlStr = "http://localhost/api/book?limit=5000&authorId=" + a.getId();
List<JsonBook> Jsbooks = mapper1.readValue(
new URL(urlStr), BOOK_LIST_TYPE_REFERENCE);
List<Book> books = Lists.newArrayList();
for (JsonBook jsonBook : Jsbooks) {
books.add(jsonBook.toAvro());
}
return books;
}
}));
}
pool.shutdown();
pool.awaitTermination(3, TimeUnit.MINUTES);
List<Book> bookList = Lists.newArrayList();
for (Future<List<Book>> future : futures) {
if (!future.isDone()) {
LogUtil.info("future " + future.toString()); <-- future not finished yet
throw new RuntimeException("Future to retrieve books: " + future + " did not complete");
}
bookList.addAll(future.get());
}
and i saw some excepitons at the (!future.isDone()) block. how can i make sure every future is done when executor service shutdown?
I like to use the countdown latch.
Set the latch to the size that you're iterating and pass that latch into your callables, then in your run / call method have a try/finally block that decrements the countdown latch.
After everything has been enqueued to your executor service, just call your latch's await method, which will block until it's all done. At that time all your callables will be finished, and you can properly shut down your executor service.
This link has an example of how to set it up.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/CountDownLatch.html

Resources