I try to set up Kubernetes cluster. I have Persistent Volume, Persistent Volume Claim and Storage class all set-up and running but when I wan to create pod from deployment, pod is created but it hangs in Pending state. After describe I get only this warning "1 node(s) had volume node affinity conflict." Can somebody tell me what I am missing in my volume configuration?
apiVersion: v1
kind: PersistentVolume
metadata:
creationTimestamp: null
labels:
io.kompose.service: mariadb-pv0
name: mariadb-pv0
spec:
volumeMode: Filesystem
storageClassName: local-storage
local:
path: "/home/gtcontainer/applications/data/db/mariadb"
accessModes:
- ReadWriteOnce
capacity:
storage: 2Gi
claimRef:
namespace: default
name: mariadb-claim0
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/cvl-gtv-42.corp.globaltelemetrics.eu
operator: In
values:
- master
status: {}
The error "volume node affinity conflict" happens when the persistent volume claims that the pod is using, are scheduled on different zones, rather than on one zone, and so the actual pod was not able to be scheduled because it cannot connect to the volume from another zone. To check this, you can see the details of all the Persistent Volumes.
To check that, first get your PVCs:
$ kubectl get pvc -n <namespace>
Then get the details of the Persistent Volumes (not Volume claims)
$ kubectl get pv
Find the PVs, that correspond to your PVCs and describe them
$ kubectl describe pv <pv1> <pv2>
You can check the Source.VolumeID for each of the PV, most likely they will be different availability zone, and so your pod gives the affinity error.
To fix this, create a storageclass for a single zone and use that storageclass in your PVC.
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: region1storageclass
provisioner: kubernetes.io/aws-ebs
parameters:
type: gp2
encrypted: "true" # if encryption required
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: failure-domain.beta.kubernetes.io/zone
values:
- eu-west-2b # this is the availability zone, will depend on your cloud provider
# multi-az can be added, but that defeats the purpose in our scenario
0. If you didn't find the solution in other answers...
In our case the error happened on a AWS EKS cluster freshly provisioned with Pulumi (see full source here). The error drove me nuts, since I didn't change anything, just created a PersistentVolumeClaim as described in the Buildpacks Tekton docs:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: buildpacks-source-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 500Mi
I didn't change anything else from the default EKS configuration and also didn't add/change any PersistentVolume or StorageClass (in fact I didn't even know how to do that). As the default EKS setup seems to rely on 2 nodes, I got the error:
0/2 nodes are available: 2 node(s) had volume node affinity conflict.
Reading through Sownak Roy's answer I got a first glue what to do - but didn't know how to do it. So for the folks interested here are all my steps to resolve the error:
1. Check EKS nodes failure-domain.beta.kubernetes.io labels
As described in the section Statefull applications in this post two nodes are provisioned on other AWS availability zones as the persistent volume (PV), which is created by applying our PersistendVolumeClaim described above.
To check that, you need to look into/describe your nodes with kubectl get nodes:
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-172-31-10-186.eu-central-1.compute.internal Ready <none> 2d16h v1.21.5-eks-bc4871b
ip-172-31-20-83.eu-central-1.compute.internal Ready <none> 2d16h v1.21.5-eks-bc4871b
and then have a look at the Label section using kubectl describe node <node-name>:
$ kubectl describe node ip-172-77-88-99.eu-central-1.compute.internal
Name: ip-172-77-88-99.eu-central-1.compute.internal
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/instance-type=t2.medium
beta.kubernetes.io/os=linux
failure-domain.beta.kubernetes.io/region=eu-central-1
failure-domain.beta.kubernetes.io/zone=eu-central-1b
kubernetes.io/arch=amd64
kubernetes.io/hostname=ip-172-77-88-99.eu-central-1.compute.internal
kubernetes.io/os=linux
node.kubernetes.io/instance-type=t2.medium
topology.kubernetes.io/region=eu-central-1
topology.kubernetes.io/zone=eu-central-1b
Annotations: node.alpha.kubernetes.io/ttl: 0
...
In my case the node ip-172-77-88-99.eu-central-1.compute.internal has failure-domain.beta.kubernetes.io/region defined as eu-central-1 and the az with failure-domain.beta.kubernetes.io/zone to eu-central-1b.
And the other node defines failure-domain.beta.kubernetes.io/zone az eu-central-1a:
$ kubectl describe nodes ip-172-31-10-186.eu-central-1.compute.internal
Name: ip-172-31-10-186.eu-central-1.compute.internal
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/instance-type=t2.medium
beta.kubernetes.io/os=linux
failure-domain.beta.kubernetes.io/region=eu-central-1
failure-domain.beta.kubernetes.io/zone=eu-central-1a
kubernetes.io/arch=amd64
kubernetes.io/hostname=ip-172-31-10-186.eu-central-1.compute.internal
kubernetes.io/os=linux
node.kubernetes.io/instance-type=t2.medium
topology.kubernetes.io/region=eu-central-1
topology.kubernetes.io/zone=eu-central-1a
Annotations: node.alpha.kubernetes.io/ttl: 0
...
2. Check PersistentVolume's topology.kubernetes.io field
Now we should check the PersistentVolume automatically provisioned after we manually applied our PersistentVolumeClaim. Use kubectl get pv:
$ kubectl get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
pvc-93650993-6154-4bd0-bd1c-6260e7df49d3 1Gi RWO Delete Bound default/buildpacks-source-pvc gp2 21d
followed by kubectl describe pv <pv-name>
$ kubectl describe pv pvc-93650993-6154-4bd0-bd1c-6260e7df49d3
Name: pvc-93650993-6154-4bd0-bd1c-6260e7df49d3
Labels: topology.kubernetes.io/region=eu-central-1
topology.kubernetes.io/zone=eu-central-1c
Annotations: kubernetes.io/createdby: aws-ebs-dynamic-provisioner
...
The PersistentVolume was configured with the label topology.kubernetes.io/zone in az eu-central-1c, which makes our Pods complain about not finding their volume - since they are in a completely different az!
3. Add allowedTopologies to StorageClass
As stated in the Kubernetes docs one solution to the problem is to add a allowedTopologies configuration to the StorageClass. If you already provisioned a EKS cluster like me, you need to retrieve your already defined StorageClass with
kubectl get storageclasses gp2 -o yaml
Save it to a file called storage-class.yml and add a allowedTopologies section that matches your node's failure-domain.beta.kubernetes.io labels like this:
allowedTopologies:
- matchLabelExpressions:
- key: failure-domain.beta.kubernetes.io/zone
values:
- eu-central-1a
- eu-central-1b
The allowedTopologies configuration defines that the failure-domain.beta.kubernetes.io/zone of the PersistentVolume must be either in eu-central-1a or eu-central-1b - not eu-central-1c!
The full storage-class.yml looks like this:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: gp2
parameters:
fsType: ext4
type: gp2
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
allowedTopologies:
- matchLabelExpressions:
- key: failure-domain.beta.kubernetes.io/zone
values:
- eu-central-1a
- eu-central-1b
Apply the enhanced StorageClass configuration to your EKS cluster with
kubectl apply -f storage-class.yml
4. Delete PersistentVolumeClaim, add storageClassName: gp2 to it and re-apply it
In order to get things working again, we need to delete the PersistentVolumeClaim first.
To map the PersistentVolumeClaim to our previously define StorageClass we need to add storageClassName: gp2 to the PersistendVolumeClaim definition in our pvc.yml:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: buildpacks-source-pvc
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 500Mi
storageClassName: gp2
Finally re-apply the PersistentVolumeClaim with kubectl apply -f pvc.yml. This should resolve the error.
There a few things that can cause this error:
Node isn’t labeled properly. I had this issue on AWS when my worker node didn’t have appropriate labels(master had them though) like that:
failure-domain.beta.kubernetes.io/region=us-east-2
failure-domain.beta.kubernetes.io/zone=us-east-2c
After patching the node with the labels, the “1 node(s) had volume node affinity conflict” error was gone, so PV, PVC with a pod were deployed successfully.
The value of these labels is cloud provider specific. Basically, it is the job of the cloud provider(with —cloud-provider option defined in cube-controller, API-server, kubelet) to set those labels. If appropriate labels aren’t set, then check that your CloudProvider integration is correct. I used kubeadm, so it is cumbersome to set up but with other tools, kops, for instance, it is working right away.
Based on your PV definition and the usage of nodeAffinity field, you are trying to use a local volume, (read here local volume description link, official docs), then make sure that you set "NodeAffinity field" like that(it worked in my case on AWS):
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- my-node # it must be the name of your node(kubectl get nodes)
So that after creating the resource and running describe on it it will show up there like that:
Required Terms:
Term 0: kubernetes.io/hostname in [your node name]
StorageClass definition(named local-storage, which is not posted here) must be created with volumeBindingMode set to WaitForFirstConsumer for local storage to work properly. Refer to the example here storage class local description, official doc to understand the reason behind that.
The "1 node(s) had volume node affinity conflict" error is created by the scheduler because it can't schedule your pod to a node that conforms with the persistenvolume.spec.nodeAffinity field in your PersistentVolume (PV).
In other words, you say in your PV that a pod using this PV must be scheduled to a node with a label of kubernetes.io/cvl-gtv-42.corp.globaltelemetrics.eu = master, but this isn't possible for some reason.
There may be various reason that your pod can't be scheduled to such a node:
The pod has node affinities, pod affinities, etc. that conflict with the target node
The target node is tainted
The target node has reached its "max pods per node" limit
There exists no node with the given label
The place to start looking for the cause is the definition of the node and the pod.
Great answer by Sownak Roy. I've had the same case of a PV being created in a different zone compared to the node that was supposed to use it. The solution I applied was based on Sownak's answer only in my case it was enough to specify the storage class without the "allowedTopologies" list, like this:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: cloud-ssd
provisioner: kubernetes.io/aws-ebs
parameters:
type: gp2
volumeBindingMode: WaitForFirstConsumer
After some headache inducing investigation there are a few things that are needed to be checked:
Azure:
Does your cluster have more that one zone selected? (zone 1, 2, 3)
Does your default storage class have the correct storage provider?
(ZRS Zone-Redundant-Storage)
If not:
change the storage class to use te correct provider
create backup of PV data
stop the deployment that is using the PVC (set replicas to 0)
delete the PVC and confirm that the associated PV is deleted.
re-apply the PVC config yaml (without reference to the old storageclass name)
start the deployment that is using the PVC (set replicas to 1)
manually import backupdata
Example storageclass for AKS:
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: zone-redundant-storage
parameters:
skuname: StandardSSD_ZRS
provisioner: disk.csi.azure.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
GKE:
Does your cluster have more than one zone selected? (Zone A, B, C)
Does your default storage class have replication-type parameter? (replication-type: regional-pd)
If not:
change the storage class to use te correct parameters
create backup of PV data
stop the deployment that is using the PVC (set replicas to 0)
delete the PVC and confirm that the associated PV is deleted.
re-apply the PVC config yaml (without reference to the old storageclass name)
start the deployment that is using the PVC (set replicas to 1)
manually import backupdata
Example storageclass for GKE:
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: standard-regional-pd-storage
provisioner: pd.csi.storage.gke.io
parameters:
type: pd-standard
replication-type: regional-pd
volumeBindingMode: WaitForFirstConsumer
After that PV's will have redundancy across the selected zones allowing a pod to access PV from other nodes in different zones.
In my case, the root cause was that the persistent volume are in us-west-2c and the new worker nodes are relaunched to be in us-west-2a and us-west-2b. The solution is to either have more worker nodes so they are in more zones, or remove / widen node affinity for the application so that more worker nodes qualifies to be bounded to the persistent volume.
Make sure the kubernetes node had the required label. You can verify the node labels using:
kubectl get nodes --show-labels
One of the kubernetes nodes should show you the name/ label of the persistent volume and your pod should be scheduled on the same node.
Make sure the requested size in PersistentVolumeClaim is matching with the size of the PersistentVolume. If the size does not match, either correct the resources.requests.storage in PersistentVolumeClaim or delete the old PersistentVolume and create a new one with the correct size.
Verification steps:
Describe your persistent volume:
kubectl describe pv postgres-br-proxy-pv-0
Output:
...
Node Affinity:
Required Terms:
Term 0: postgres-br-proxy in [postgres-br-proxy-pv-0]
...
Show node labels:
kubectl get nodes --show-labels
Output:
NAME STATUS ROLES AGE VERSION LABELS
node3 Ready <none> 19d v1.17.6 postgres-br-proxy=postgres-br-proxy-pv-0
If you are not getting the persistent volume label on the node that your pod is using then the pod won't get scheduled.
For me, this happened on GKE after upgrading to k8s v1.25. In my case, none of the above worked, so I looked into cloning the volume as I didn't want to lose the data.
This post led me to enable the Compute Engine persistent disk CSI Driver which once enabled, fixed my issue.
Different case from GCP GKE. Assume that you are using regional cluster and you created two PVC. Both were created in different zones (you didn't notice).
In next step you are trying to run the pod which will have mounted both PVC to the same pod. You have to schedule that pod to specific node in specific zone but because your volumes are on different zones the k8s won't be able to schedule that and you will receive the following problem.
For example - two simple PVC(s) on the regional cluster (nodes in different zones):
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: disk-a
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: disk-b
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
Next simple pod:
apiVersion: v1
kind: Pod
metadata:
name: debug
spec:
containers:
- name: debug
image: pnowy/docker-tools:latest
command: [ "sleep" ]
args: [ "infinity" ]
volumeMounts:
- name: disk-a
mountPath: /disk-a
- name: disk-b
mountPath: /disk-b
volumes:
- name: disk-a
persistentVolumeClaim:
claimName: disk-a
- name: disk-b
persistentVolumeClaim:
claimName: disk-b
Finally as a result it could happen that k8s won't be able schedule to pod because the volumes are on different zones.
On AWS EKS, you may also get this problem if you forget to install the aws-ebs-csi-driver EKS addon prior to upgrading your Kubernetes cluster from 1.22 to 1.23.
You can also install the addon after the upgrade (although with some service interruption).
Make sure to check the AWS FAQ on this: https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi-migration-faq.html
almost same problem described here...
https://github.com/kubernetes/kubernetes/issues/61620
"If you're using local volumes, and the node crashes, your pod cannot be rescheduled to a different node. It must be scheduled to the same node. That is the caveat of using local storage, your Pod becomes bound forever to one specific node."
Most likely you just reduced number of nodes in your kubernetes cluster and some "regions" are not available anymore...
Something worth mentioning... if your pod will be in different zone than persistent volume then:
your disc access times will drop significantly (your local persistent storage is not local anymore - even with Amazon's / Google's fiber hyper fast links it's still traffic across data centers)
you will be paying for "cross regional network" (on your AWS bill it is something that goes into "EC2-other" and only after drilling down Aws Bill you can spot that)
One cause from this is when you have a definition like below (Kafka Zookeeper in this example) which is using multiple pvcs for one container. If they land on different nodes, you will get something like the following: ..volume node affinity conflict. The solution here is to use one pvc definition and use subPath on the volumeMount.
Problem
...
volumeMounts:
- mountPath: /data
name: kafka-zoo-data
- mountPath: /datalog
name: kafka-zoo-datalog
restartPolicy: Always
volumes:
- name: kafka-zoo-data
persistentVolumeClaim:
claimName: "zookeeper-data"
- name: kafka-zoo-datalog
persistentVolumeClaim:
claimName: "zookeeper-datalog"
Resolved
...
volumeMounts:
- mountPath: /data
subPath: data
name: kafka-zoo-data
- mountPath: /datalog
subPath: datalog
name: kafka-zoo-data
restartPolicy: Always
volumes:
- name: kafka-zoo-data
persistentVolumeClaim:
claimName: "zookeeper-data"
In my case, I was working with minikube on Docker Desktop on Windows, and my example was using only docker-desktop value as node name. so the setup is pretty important.
I have added minikube as I was using a single node. there might be more if additional nodes are added, such as minikube-m02.
spec:
nodeAffinity:
required:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- minikube
kubectl get node should be enough to give node names.
In my case I just deleted the PersistentVolumeClaim associated with the conflicting Pod and then recreated the pod.
Another reason for this error to occur is if you have a mix of nodes utilising taints. In some releases the DaemonSet component of the EBS CSI driver does not tolerate all taints by default; if you're trying to schedule a Pod onto a node with a taint and because of that taint it doesn't have the ebs-csi-node Pod running, you get this error.
Related
I created a PVC and then tried to expand the size of the volume claim.
Volume expansion is set to true as below:
minikube kubectl -- get sc
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE
fast kubernetes.io/gce-pd Delete Immediate true 55m
standard (default) k8s.io/minikube-hostpath Delete Immediate true 156m
I patched the PVC using kubectl edit.
When I described the PVC I get the below message:
Normal ExternalProvisioning 93s (x177 over 61m) persistent volume-controller waiting for a volume to be created, either by external provisioner "pd.csi.storage.gke.io" or manually created by the system administrator.
Should I create a volume here? Please Help.
Please refer this code to reproduce the issue.
It seems you are creating a PVC using a GKE provision, in this case, you don't need to create PV, only PVC example:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: volume-name
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 3Gi
Google is only allowing ReadWriteOnce and ReadOnlyOnce for this type of dynamic provisioning yet. Basically, after applying this config you still need to create a pod to consume this volume. After this the creation and bind are complete.
I'm running Docker Desktop with Kubernetes.
I can ssh to the node and I have other pods running on the node.
However, when I apply a StatefulSet to the cluster I get:
0/1 nodes are available: 1 pod has unbound immediate PersistentVolumeClaims. preemption: 0/1 nodes are available: 1 Preemption is not helpful for scheduling.
The Stateful Set is here:
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#components
kubectl get no
NAME STATUS ROLES AGE VERSION
docker-desktop Ready control-plane 6d2h v1.24.1
If you are applying the manifest defined here as it is, the problem is in the below snippet, particularly with the storageClassName. Likely, your cluster does not have a storage class called my-storage-class.
volumeClaimTemplates:
- metadata:
name: www
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: "my-storage-class"
resources:
requests:
storage: 1Gi
To get the definitive error statement, you can run the following command:
kubectl describe pvc www-web-0
you will notice something like:
storageclass.storage.k8s.io "my-storage-class" not found
Solution:
You can run the following command to get your cluster's available storage class and replace it in yaml file.
kubectl get sc
Alternatively, you can delete the storageClassName and let the default storage class do the magic. However, for this to work, you must have a default sc present in your cluster.
If you have no storage class present, you need to create one. Check this out.
if your using k8s locally with docker desktop ensure that the storageClassName is set to "hostpath" below is one of my volumeClaimTemplates for a local redis cluster. The comment has saved me a few times when getting the "0/1 nodes are available" which is a confusing error
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: ["ReadWriteOnce"]
##############################
## this will catch you out ##
# for Docker Desktop (Local K8s Cluster) set to -> storageClassName: "hostpath"
##############################
storageClassName: "hostpath"
resources:
requests:
storage: 250Mi
We have a Kubernetes cluster.
Now we want to expand that with GPU nodes (so that would be the only nodes in the Kubernetes cluster that have GPUs).
We'd like to avoid Kubernetes to schedule pods on those nodes unless they require GPUs.
Not all of our pipelines can use GPUs. The absolute majority are still CPU-heavy only.
The servers with GPUs could be very expensive (for example, Nvidia DGX could be as much as $150/k per server).
If we just add DGX nodes to Kubernetes cluster, then Kubernetes would schedule non-GPU workloads there too, which would be a waste of resources (e.g. other jobs that are getting scheduled later and do need GPUs, may have other non-GPU resources there exhausted there like CPU and memory, so they would have to wait for non-GPU jobs/containers to finish).
Is there is a way to customize GPU resource scheduling in Kubernetes so that it would only schedule pods on those expensive nodes if they require GPUs? If they don't, they may have to wait for availability of other non-GPU resources like CPU and memory on non-GPU servers...
Thanks.
You can use labels and label selectors for this.
kubernates docs
Update: example
apiVersion: v1
kind: Pod
metadata:
name: with-gpu-antiAffinity
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: resources
operator: In
values:
- cpu-only
Using labels and label selectors for your nodes is right. But you need to use NodeAffinity on your pods.
Something like this:
apiVersion: v1
kind: Pod
metadata:
name: run-with-gpu
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/node-type
operator: In
values:
- gpu
containers:
- name: your-gpu-workload
image: mygpuimage
Also, attach the label to your GPU nodes:
$ kubectl label nodes <node-name> kubernetes.io/node-type=gpu
Background: I'm trying to set up a Bitcoin Core regtest pod on Google Cloud Platform. I borrowed some code from https://gist.github.com/zquestz/0007d1ede543478d44556280fdf238c9, editing it so that instead of using Bitcoin ABC (a different client implementation), it uses Bitcoin Core instead, and changed the RPC username and password to both be "test". I also added some command arguments for the docker-entrypoint.sh script to forward to bitcoind, the daemon for the nodes I am running. When attempting to deploy the following three YAML files, the dashboard in "workloads" shows bitcoin has not having minimum availability. Getting the pod to deploy correctly is important so I can send RPC commands to the Load Balancer. Attached below are my YAML files being used. I am not very familiar with Kubernetes, and I'm doing a research project on scalability which entails running RPC commands against this pod. Ask for relevant logs and I will provide them in seperate pastebins. Right now, I'm only running three machines on my cluster, as I'm am still setting this up. The zone is us-east1-d, machine type is n1-standard-2.
Question: Given these files below, what is causing GCP Kubernetes Engine to respond with "Does not have minimum availability", and how can this be fixed?
bitcoin-deployment.sh
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
namespace: default
labels:
service: bitcoin
name: bitcoin
spec:
strategy:
type: Recreate
replicas: 1
template:
metadata:
labels:
service: bitcoin
spec:
containers:
- env:
- name: BITCOIN_RPC_USER
valueFrom:
secretKeyRef:
name: test
key: test
- name: BITCOIN_RPC_PASSWORD
valueFrom:
secretKeyRef:
name: test
key: test
image: ruimarinho/bitcoin-core:0.17.0
name: bitcoin
ports:
- containerPort: 18443
protocol: TCP
volumeMounts:
- mountPath: /data
name: bitcoin-data
resources:
requests:
memory: "1.5Gi"
command: ["./entrypoint.sh"]
args: ["-server", "-daemon", "-regtest", "-rpcbind=127.0.0.1", "-rpcallowip=0.0.0.0/0", "-rpcport=18443", "-rpcuser=test", "-rpcpassport=test"]
restartPolicy: Always
volumes:
- name: bitcoin-data
gcePersistentDisk:
pdName: disk-bitcoincore-1
fsType: ext4
bitcoin-secrets.yml
apiVersion: v1
kind: Secret
metadata:
name: bitcoin
type: Opaque
data:
rpcuser: dGVzdAo=
rpcpass: dGVzdAo=
bitcoin-srv.yml
apiVersion: v1
kind: Service
metadata:
name: bitcoin
namespace: default
spec:
ports:
- port: 18443
targetPort: 18443
selector:
service: bitcoin
type: LoadBalancer
externalTrafficPolicy: Local
I have run into this issue several times. The solutions that I used:
Wait. Google Cloud does not have enough resource available in the Region/Zone that you are trying to launch into. In some cases this took an hour to an entire day.
Select a different Region/Zone.
An example was earlier this month. I could not launch new resources in us-west1-a. I think just switched to us-east4-c. Everything launched.
I really do not know why this happens under the covers with Google. I have personally experienced this problem three times in the last three months and I have seen this problem several times on StackOverflow. The real answer might be a simple is that Google Cloud is really started to grow faster than their infrastructure. This is a good thing for Google as I know that they are investing in major new reasources for the cloud. Personally, I really like working with their cloud.
There could be many reasons for this failure:
Insufficient resources
Liveliness probe failure
Readiness probe failure
I encountered this error within GKE.
The reason was the pod was not about to find the configmap due to name mismatch. So make sure all the resources are discoverable by the pod.
The error message you mentioned isn't directly pointing to a stockout; it's more of resources unavailable within the cluster. You can try again after adding another node to the cluster etc. Also, this troubleshooting guide suggests if your Nodes have enough resources but you still have Does not have minimum availability message, check if the Nodes have SchedulingDisabled or Cordoned status: in this case they don't accept new pods.
Please, check your logs https://console.cloud.google.com/logs you might be surprised that your app is been failing.
I faced with the same issue when my spring-boot application failed to start due to my spring-boot configuration mistake.
Also in the args you use:
args: ["-server", "-daemon", "-regtest", "-rpcbind=127.0.0.1", "-rpcallowip=0.0.0.0/0", "-rpcport=18443", "-rpcuser=test", "-rpcpassport=test"]
should it be "-rpcpassport" or "-rpcpassword" ?
I am trying to configure my Kubernetes cluster to use a local NFS server for persistent volumes.
I set up the PersistentVolume as follows:
apiVersion: v1
kind: PersistentVolume
metadata:
name: hq-storage-u4
namespace: my-ns
spec:
capacity:
storage: 10Ti
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
nfs:
path: /data/u4
server: 10.30.136.79
readOnly: false
The PV looks OK in kubectl
$ kubectl get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE
hq-storage-u4 10Ti RWX Retain Released my-ns/pv-50g 49m
I then try to create the PersistentVolumeClaim:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: pvc-50gb
namespace: my-ns
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi
Kubectl shows the pvc status is Pending
$ kubectl get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE
pvc-50gb Pending 16m
When I try to add the volume to a deployment, I get the error:
[SchedulerPredicates failed due to PersistentVolumeClaim is not bound: "pvc-50gb", which is unexpected., SchedulerPredicates failed due to PersistentVolumeClaim is not bound: "pvc-50gb", which is unexpected., SchedulerPredicates failed due to PersistentVolumeClaim is not bound: "pvc-50gb", which is unexpected.]
How to I get the pvc to a working state?
It turned out that I needed to put the IP (I also put the path) in quotes. After fixing that, the pvc goes to status Bound, and the pod can mount correctly.
I can't comment on your post so I'll just attempt to answer this.
I've encountered 2 kinds of errors when PVCs don't work on my NFS cluster. Installing a PV usually succeed, so the status message provided doesn't say much.
The annotation and spec of the PV and the PVC are dissimilar. This doesn't look like the case.
The node of the pod that uses the NFS resource cannot mount the resource. Try mount -t nfs 10.30.136.79:/data/u4 /mnt on the node that is supposed to mount the NFS resource. This should succeed. If this fails, it could be
The lack of mount permissions. Rectify /etc/exports in your NFS server.
A firewall blocking the NFS ports. Fix the firewall.
One more thing, a non-privileged user in the pod might have trouble writing to the NFS resource. The uid/gid of the NFS user in the pod must match the perms of the NFS resource.
Bonne chance!