Definitionless, private function - dart

I am new to dart, and I am not familiar with this concept. Some patience is appreciated.
I was reading some code, here, when I came across this. (line 14)
static final none = Motility._(0);
Looking at the second half of the assignment, I can see a private function that takes an integer, but after some searching I do not see a definition in the class.
So, my question is what is this mysterious function? I am assuming this is a feature of the language, but I am having trouble looking it up since I have never heard of this concept!

It invokes the constructor
Motility._(this._bitMask);
https://github.com/munificent/hauberk/blob/master/lib/src/engine/stage/tile.dart#L28
It is not that obvious anymore since new became optional, but it is a common pattern to have private constructors. (Identifiers starting with _ are private in Dart)
Motility is basically an enum that is built this way instead of
enum Motility { none, door, fly, swim, walk, doorAndFly, doorAndWalk, flyAndWalk }
because this way custom values can be assigned.

Related

Defining property in constructor

I'm trying to do something that would be a basic feature in any other Object Oriented Language but for some reasons in Dart, I can't manage to do it. I'm new to Dart so this question might be dumb, but I couldn't find any answer online.
I have a property that need to be calculated once and on the constructor. This is my code so far :
class Game {
String _wordChosen;
Game() {
final _random = Random();
_wordChosen = WORDS[_random.nextInt(WORDS.length)];
}
}
WORDS is a list defined outside the class. My error is on the Game constructor :
not_initialized_non_nullable_instance_field.
I don't want to set the _wordChosen variable to a default value as that would make no sense (it would be overwritten right when the constructor is run).
I also don't want to set the property as nullable as again, it would make no sense.
i think the answer is using the keyword late to make compiler know that you will initialize the variable before using it but not now like below
late String _wordChosen;
i think this is your solution and it in null safety documents here
i hope this answer helps you

Why does dart not allow method overloading?

I tried to use method overloading in some dart code and quickly learned that overloading is not offered in dart.
My questions are: why is it not offered, and what is the recommended alternative? Is there a standard naming convention since methods that do the same thing but with different inputs must have different names?
Is it standard to use named parameters and then check that the caller has supplied enough information to complete the calculation?
Say I have a method that returns how much money someone makes in a year, called yearlyIncome.
In Java, I would create a method like this
double yearlyIncome(double hourlyRate, double hoursWorkedPerYear)
And maybe another method like this
double yearlyIncome(double monthlyRate, int monthsWorkedPerYear)
and so on. They're all used to calculate the same thing, but with different inputs. What's the best, standardized way to do this in dart?
Thanks so much in advance.
Function overloading is not supported in Dart at all.
Function overloading requires static types. Dart at its core is a dynamically typed language.
You can either use different names for the methods or optional named or unnamed parameters
// optional unnamed
void foo(int a, [String b]);
foo(5);
foo(5, 'bar');
// optional named
void foo(int a, {String b});
foo(5);
foo(5, b :'bar');
Optional parameters can also have default values. Optional named and unnamed parameters can not be used together (only one or the other for a single function)
In the case of a constructor you can use named constructors as an alternative
Dart did not support overloading originally because it was a much more dynamic language where the declared types did not have any semantic effect. That made it impossible to use static type based overload resolution.
Dart has since changed to be more statically type, and there is nothing fundamentally preventing Dart from adding overloading today, except that it would be a huge work and a huge change to the language. Or so I'd assume, because there isn't any obvious design that isn't either highly complicated or hugely breaking.
What you do instead in Dart is to use optional parameters. A method like:
String toString([int radix]);
effectively have two signatures: String Function() and String Function(int). It can act at both signatures.
There are definite limits to how far you can go with just optional parameters, because they still need to have exactly one type each, but that is the alternative that Dart currently provides. (Or use different names, but that's not overloading, you can do that in languages with overloading too).
Optional parameters is also one of the complications if we wanted to add overloading to the Dart language - would existing functions with optional parameters would count as multiple overloadings? If you declare a class like:
abstract class WithOverloading {
String toString();
String toString(int radix);
}
is that then the same signature as:
abstract class WithoutOverloading {
String toString([int radix]);
}
Probably not because you can tear off the latter and get one function with an optional parameter, and you might not be able to tear off both functions from the former and combine them into one function. Or maybe you can, that's why it's not a trivial design question how to include overloading into the existing Dart language.

In Dart's Strong-Mode, can I leave off types from function definitions?

For example, I'd like to just be able to write:
class Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}
But have #Dog.bark's type definition be () => String.
This previously wasn't possible in Dart 1.x, but I'm hoping type inference can save the day and avoid having to type trivial functions where the return type is inferable (the same as it does for closures today?)
The language team doesn't currently have any plans to do inference on member return types based on their bodies. There are definitely cases like this where it would be nice, but there are other cases (like recursive methods) where it doesn't work.
With inference, we have to balance a few opposing forces:
Having smart inference that handles lots of different cases to alleviate as much typing pain as we can.
Having some explicit type annotations so that things like API boundaries are well-defined. If you change a method body and that changes the inferred return type, now you've made a potentially breaking change to your API.
Having a simple boundary between code that is inferred and code that is not so that users can easily reason about which parts of their code are type safe and which need more attention.
The case you bring up is right at the intersection of those. Personally, I lean towards not inferring. I like my class APIs to be pretty explicitly typed anyway, since I find it makes them easier to read and maintain.
Keep in mind that there are similar cases where inference does come into play:
Dart will infer the return type of an anonymous function based on its body. That makes things like lambdas passed to map() do what you want.
It will infer the return type of a method override from the method it is overriding. You don't need to annotate the return type in Beagle.bark() here:
class Dog {
String bark() => "Bark!";
}
class Beagle extends Dog {
final String name;
Dog(this.name);
bark() => 'Woof woof said $name';
}

Is there any performance reasons to change a function into a static function?

When developing actionscript/flex in IntelliJ IDEA, there's this IDEA inspection that suggests that so-and-so private function can be turned into a static function.
I've been ignoring it for a while now, but I'm curious as to whether, in actionscript, there's any performance benefit of declaring functions that can be static as static.
Coming from a Java background, it seems odd to me for IDEA to be suggesting that a function be made static just because it can... yet such an inspection does not exist in the Java editor.
For example, IDEA would suggest that I make the following static:
private function eventName(attributeName:String):String {
return attributeName + EVENT_NAME_SUFFIX;
}
No. There is actually quite an incentive to do the opposite.
This should not be so - naturally, one would think static functions would be faster - but ActionScript 3 does not behave this way. Whoever wrote IDEA did not do their research on this, but rather they went with their instincts and with what should be true.
Here's one source of information on this subject:
http://blog.controul.com/2009/04/how-slow-is-static-access-in-as3avm2-exactly/

A pragmatic view on private vs public

I've always wondered on the topic of public, protected and private properties. My memory can easily recall times when I had to hack somebody's code, and having the hacked-upon class variables declared as private was always upsetting.
Also, there were (more) times I've written a class myself, and had never recognized any potential gain of privatizing the property. I should note here that using public vars is not in my habit: I adhere to the principles of OOP by utilizing getters and setters.
So, what's the whole point in these restrictions?
The use of private and public is called Encapsulation. It is the simple insight that a software package (class or module) needs an inside and an outside.
The outside (public) is your contract with the rest of the world. You should try to keep it simple, coherent, obvious, foolproof and, very important, stable.
If you are interested in good software design the rule simply is: make all data private, and make methods only public when they need to be.
The principle for hiding the data is that the sum of all fields in a class define the objects state. For a well written class, each object should be responsible for keeping a valid state. If part of the state is public, the class can never give such guarantees.
A small example, suppose we have:
class MyDate
{
public int y, m, d;
public void AdvanceDays(int n) { ... } // complicated month/year overflow
// other utility methods
};
You cannot prevent a user of the class to ignore AdvanceDays() and simply do:
date.d = date.d + 1; // next day
But if you make y, m, d private and test all your MyDate methods, you can guarantee that there will only be valid dates in the system.
The whole point is to use private and protected to prevent exposing internal details of your class, so that other classes only have access to the public "interfaces" provided by your class. This can be worthwhile if done properly.
I agree that private can be a real pain, especially if you are extending classes from a library. Awhile back I had to extend various classes from the Piccolo.NET framework and it was refreshing that they had declared everything I needed as protected instead of private, so I was able to extend everything I needed without having to copy their code and/or modify the library. An important take-away lesson from that is if you are writing code for a library or other "re-usable" component, that you really should think twice before declaring anything private.
The keyword private shouldn't be used to privatize a property that you want to expose, but to protect the internal code of your class. I found them very helpful because they help you to define the portions of your code that must be hidden from those that can be accessible to everyone.
One example that comes to my mind is when you need to do some sort of adjustment or checking before setting/getting the value of a private member. Therefore you'd create a public setter/getter with some logic (check if something is null or any other calculations) instead of accessing the private variable directly and always having to handle that logic in your code. It helps with code contracts and what is expected.
Another example is helper functions. You might break down some of your bigger logic into smaller functions, but that doesn't mean you want to everyone to see and use these helper functions, you only want them to access your main API functions.
In other words, you want to hide some of the internals in your code from the interface.
See some videos on APIs, such as this Google talk.
Having recently had the extreme luxury of being able to design and implement an object system from scratch, I took the policy of forcing all variables to be (equivalent to) protected. My goal was to encourage users to always treat the variables as part of the implementation and not the specification. OTOH, I also left in hooks to allow code to break this restriction as there remain reasons to not follow it (e.g., the object serialization engine cannot follow the rules).
Note that my classes did not need to enforce security; the language had other mechanisms for that.
In my opinion the most important reason for use private members is hiding implementation, so that it can changed in the future without changing descendants.
Some languages - Smalltalk, for instance - don't have visibility modifiers at all.
In Smalltalk's case, all instance variables are always private and all methods are always public. A developer indicates that a method's "private" - something that might change, or a helper method that doesn't make much sense on its own - by putting the method in the "private" protocol.
Users of a class can then see that they should think twice about sending a message marked private to that class, but still have the freedom to make use of the method.
(Note: "properties" in Smalltalk are simply getter and setter methods.)
I personally rarely make use of protected members. I usually favor composition, the decorator pattern or the strategy pattern. There are very few cases in which I trust a subclass(ing programmer) to handle protected variables correctly. Sometimes I have protected methods to explicitly offer an interface specifically for subclasses, but these cases are actually rare.
Most of the time I have an absract base class with only public pure virtuals (talking C++ now), and implementing classes implement these. Sometimes they add some special initialization methods or other specific features, but the rest is private.
First of all 'properties' could refer to different things in different languages. For example, in Java you would be meaning instance variables, whilst C# has a distinction between the two.
I'm going to assume you mean instance variables since you mention getters/setters.
The reason as others have mentioned is Encapsulation. And what does Encapsulation buy us?
Flexibility
When things have to change (and they usually do), we are much less likely to break the build by properly encapsulating properties.
For example we may decide to make a change like:
int getFoo()
{
return foo;
}
int getFoo()
{
return bar + baz;
}
If we had not encapsulated 'foo' to begin with, then we'd have much more code to change. (than this one line)
Another reason to encapsulate a property, is to provide a way of bullet-proofing our code:
void setFoo(int val)
{
if(foo < 0)
throw MyException(); // or silently ignore
foo = val;
}
This is also handy as we can set a breakpoint in the mutator, so that we can break whenever something tries to modify our data.
If our property was public, then we could not do any of this!

Resources