Boolean matrix times vector multiplication in Z3 - z3

How to multiply a variable Boolean matrix by a Boolean vector in Z3 in a nice way? The sizes of the matrix and of vectors are known and fixed.
In my case there is only one matrix and there is no need to pass it as an argument or return it as a result of a function, so the matrix can be global.
Does it help if the matrix is a square matrix?
My current solution is:
; Maybe some other matrix representation would be better?
(declare-datatypes () ((ColumnIndex c0 c1 c2)))
(declare-fun column (ColumnIndex) (_ BitVec 4))
(define-fun scalarTimesVector ((a (_ BitVec 1)) (v (_ BitVec 4))) (_ BitVec 4)
(ite (= a #b1) v (_ bv0 4))
)
(define-fun matrixTimesVector ((vector (_ BitVec 3))) (_ BitVec 4)
(bvor
(scalarTimesVector ((_ extract 0 0) vector) (column c0))
(scalarTimesVector ((_ extract 1 1) vector) (column c1))
(scalarTimesVector ((_ extract 2 2) vector) (column c2))
)
)

What you are doing is just fine, especially given your matrix size is constant and never change. SMTLib has no notion of loops, although recent versions do allow recursive definitions of functions that can be used for this effect. See this answer for a different but related question on how to use recursion: https://stackoverflow.com/a/51140049/936310. However, I'd recommend sticking to your current code for simplicity and wider support from a variety of solvers.
In my mind, SMTLib should really be "generated" instead of directly used; and most tools use it this way. If your programming needs get more complicated, I'd recommend using a higher-level interface instead. There are interfaces to Z3 and other solvers from pretty much any language you can imagine. Python and Haskell provide really high-level bindings that get rid of most of the boilerplate for you. You also have low-level bindings from C/C++/Java if that's your choice. See using floating point arithmetic with Z3 C++ APIs for a comparison of the styles.

Related

Can Z3 fpRealToFP be used for practical floating point accuracy proofs?

I would like to use Z3 to prove the accuracy of certain floating point expressions. My plan was to:
Implement the expression as Reals.
Implement the same expression as Float32().
Use fpRealToFP to create correspondences between the FP and Real consts.
Prove that the results are within some margin of error.
However, despite fpRealToFP existing, it seems to fail on even the most trivial tests.
>>> import z3
>>> r = z3.Real("r")
>>> f = z3.Const("f", z3.Float32())
>>> z3.solve(f > z3.fpRealToFP(z3.RNE(), r, z3.Float32()))
failed to solve
>>> z3.solve(z3.fpToReal(f) > r)
failed to solve
Is there a reasonable way to approach this type of problem in Z3, or is this simply not something that it can do?
One approach that I've considered is to replace the Real part with a higher precision float, i.e. prove that the F32 result is within some MoE of the F128 result. This may be good enough to convince myself of probable correctness, but it wouldn't technically be a proper proof on its own.
Floating-point from/to real conversions are extremely expensive. But I'm surprised z3 can't even handle the example you posted, as there are literally no constraints at all. Here's the SMTLib equivalent:
(set-logic ALL)
(set-option :produce-models true)
(declare-fun r () Real)
(declare-fun f () (_ FloatingPoint 8 24))
(assert (fp.gt f ((_ to_fp 8 24) roundNearestTiesToEven r)))
(check-sat)
(get-model)
z3 responds unknown, but cvc5 does much better on it:
$ cvc5 a.smt2
sat
(
(define-fun r () Real (- 1.0))
(define-fun f () (_ FloatingPoint 8 24) (fp #b0 #b11111110 #b11111111111111111111111))
)
So, you might get better mileage by trying CVC5 on your examples. But keep in mind that once you have complicated constraints, all solvers will have hard time coping with these sorts of problems. Real/FP conversions create highly non-linear terms, and so far as I know no solver can deal with such problems all that well, at least not for the time being.

Get fractional part of real in QF_UFNRA

Using smtlib I would like to make something like modulo using QF_UFNRA. This disables me from using mod, to_int, to_real an such things.
In the end I want to get the fractional part of z in the following code:
(set-logic QF_UFNRA)
(declare-fun z () Real)
(declare-fun z1 () Real)
(define-fun zval_1 ((x Real)) Real
x
)
(declare-fun zval (Real) Real)
(assert (= z 1.5));
(assert (=> (and (<= 0.0 z) (< z 1.0)) (= (zval z) (zval_1 z))))
(assert (=> (>= z 1.0) (= (zval z) (zval (- z 1.0)))))
(assert (= z1 (zval z)))
Of course, as I am asking this question here, implies, that it didn't work out.
Has anybody got an idea how to get the fractional part of z into z1 using logic QF_UFNRA?
This is a great question. Unfortunately, what you want to do is not possible in general if you restrict yourself to QF_UFNRA.
If you could encode such functionality, then you can decide arbitrary Diophantine equations. You would simply cast a given Diophantine equation over reals, compute the "fraction" of the real solution with this alleged method, and assert that the fraction is 0. Since reals are decidable, this would give you a decision procedure for Diophantine equations, accomplishing the impossible. (This is known as Hilbert's 10th problem.)
So, as innocent as the task looks, it is actually not doable. But that doesn't mean you cannot encode this with some extensions, and possibly have the solver successfully decide instances of it.
If you allow quantifiers and recursive functions
If you allow yourself quantifiers and recursive-functions, then you can write:
(set-logic UFNRA)
(define-fun-rec frac ((x Real)) Real (ite (< x 1) x (frac (- x 1))))
(declare-fun res () Real)
(assert (= (frac 1.5) res))
(check-sat)
(get-value (res))
To which z3 responds:
sat
((res (/ 1.0 2.0)))
Note that we used the UFNRA logic allowing quantification, which is required here implicitly due to the use of the define-fun-rec construct. (See the SMTLib manual for details.) This is essentially what you tried to encode in your question, but instead using the recursive-function-definition facilities instead of implicit encoding. There are several caveats in using recursive functions in SMTLib however: In particular, you can write functions that render your system inconsistent rather easily. See Section 4.2.3 of http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.5-draft.pdf for details.
If you can use QF_UFNIRA
If you move to QF_UFNIRA, i.e., allow mixing reals and integers, the encoding is easy:
(set-logic QF_UFNIRA)
(declare-fun z () Real)
(declare-fun zF () Real)
(declare-fun zI () Int)
(assert (= z (+ zF zI)))
(assert (<= 0 zF))
(assert (< zF 1))
(assert (= z 1.5))
(check-sat)
(get-value (zF zI))
z3 responds:
sat
((zF (/ 1.0 2.0))
(zI 1))
(You might have to be careful about the computation of zI when z < 0, but the idea is the same.)
Note that just because the encoding is easy doesn't mean z3 will always be able to answer the query successfully. Due to mixing of Real's and Integer's, the problem remains undecidable as discussed before. If you have other constraints on z, z3 might very well respond unknown to this encoding. In this particular case, it happens to be simple enough so z3 is able to find a model.
If you have sin and pi:
This is more of a thought experiment than a real alternative. If SMTLib allowed for sin and pi, then you can check whether sin (zI * pi) is 0, for a suitably constrained zI. Any satisfying model to this query would ensure that zI is integer. You can then use this value to extract the fractional part by subtracting zI from z.
But this is futile as SMTLib neither allows for sin nor pi. And for good reason: Decidability would be lost. Having said that, maybe some brave soul can design a logic that supported sin, pi, etc., and successfully answered your query correctly, while returning unknown when the problem becomes too hard for the solver. This is already the case for nonlinear arithmetic and the QF_UFNIRA fragment: The solver may give up in general, but the heuristics it employs might solve problems of practical interest.
Restriction to Rationals
As a theoretical aside, it turns out that if you restrict yourself to rationals only (instead of actual reals) then you can indeed write a first-order formula to recognize integers. The encoding is not for the faint of heart, however: http://math.mit.edu/~poonen/papers/ae.pdf. Furthermore, since the encoding involves quantifiers, it's probably quite unlikely that SMT solvers will do well with a formulation based on this idea.
[Incidentally, I should extend thanks to my work colleagues; this question made for a great lunch-time conversation!]

Mixing theories in SMT

I would like to construct an SMT formula having a number of assertions over integer linear arithmetic and Boolean variables as well as some assertions over real non-linear arithmetic and again Boolean variables. The assertions over integers and reals share only the Boolean variables. As an example, consider the following formula:
(declare-fun b () Bool)
(assert (= b true))
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(assert (or (not b) (>= (+ x y) (- x (+ (* 2 z) 1)))))
(declare-fun r () Real)
(assert (or (not b) (= (+ (* r r) (* 3 r) (- 4)) 0)))
If I feed z3 with this formula, it immediately reports "unknown". But if I remove the integer part of it, I get the solution right away, which satisfies the constraint with variable "r". I presume this means that the non-linear constraint on its own is not hard for the solver. The issue should be in mixing (linear) constraints over integers and (non-linear) constraints over reals.
So my question is the following. What is the correct way to handle this kind of mixed formulas using z3 (if there is any)? My understanding of DPLL(T) is that it should be able to deal with such formulas using different theory solvers for different constraints. Please, correct me if I am wrong.
As George said in his comment, the non-linear solver in Z3 is rather fragile and the out-of-the-box performance isn't great. That said, there are a number of questions and answers about this problem here on stackoverflow, e.g., see these:
Z3 Performance with Non-Linear Arithmetic
How does Z3 handle non-linear integer arithmetic?
Z3 : strange behavior with non linear arithmetic
Non-linear arithmetic and uninterpreted functions
Z3 Theorem Prover: Pythagorean Theorem (Non-Linear Artithmetic)
Which techniques are used to handle Non-linear Integer Real problems in z3?
Satisfiablity checking in non-linear integer arithmetic by approximation

Defining Rules for Bit Vectors in SMT2

I have switched from using Int to Bit Vectors in SMT. However, the logic QF_BV does not allow the use of any quantifiers in your script, and I need to define FOL rules.
I know how to eliminate existential quantifiers, but universal quantifiers? How to do that?
Imagine a code like that:
(set-logic QF_AUFBV)
(define-sort Index () (_ BitVec 3))
(declare-fun P (Index) Bool)
(assert (forall ((i Index)) (= (P (bvadd i #b001)) (not (P i)) ) ) )
Strictly speaking, you're out-of-luck. According to http://smtlib.cs.uiowa.edu/logics.shtml, there's no logic that contains quantifiers and bit-vectors at the same time.
Having said that, most solvers will allow non-standard combinations. Simply leave out the set-logic command, and you might get lucky. For instance, Z3 takes your query just fine without the set-logic part; I just tried..

Is it possible to cast a bitvector of one bit into a boolean variable in SMTLib2?

I want to have a boolean variable that test if, e.g., the third bit of a bit vector is 0. The theory of bitvector allows to extract 1 bit as a bitvector, but not a boolean type. I wonder if I can do this cast. Thank you.
=== Update ===
I'm sorry if my question is not clear. But the answer of Nikolaj Bjorner is how to test a certain bit of a bit vector. While I want to assign the value of the first bit of a bit vector to a variable. I try to modify the example as follows:
(declare-fun x () (_ BitVec 5))
(declare-fun bit0 () Bool)
(assert (= (= #b1 ((_ extract 0 0) x)) bit0 ))
(check-sat)
And z3 complains:
(error "line 2 column 25: invalid declaration, builtin symbol bit0")
(error "line 3 column 44: invalid function application, sort mismatch on argument at position 2")
I need that variable bit0 for later use. Could you please give me a hint? Thanks.
Create an equality between the extraction of the third bit and a bit-vector with value 1 (and one bit).
E.g,
(declare-const x (_ BitVec 5))
(assert (= #b1 ((_ extract 2 2) x)))
(check-sat)
(get-model)
produces
sat
(model
(define-fun x () (_ BitVec 5)
#b00100)
)
What you are doing is just fine; it's just that bit0 is a reserved name. Just call it something else. (mybit0 would work, or some other unreserved name.)

Resources