Machine Learning - training data vs 'has to be classified' data - machine-learning

i have a general question about data pre-processing for machine learning.
I know that it is almost a must do to center the data around 0 (mean subtraction), normalize the data (remove the variance). There are other possible techniques. This hast to be used for training-data and validation data sets.
I have encountered a following problem. My neural network, trained to classify specific shapes in images, fails to do so if i do not apply this pre-processing techniques to the images that has to be classified. This 'to classify' images are of course not contained in training set or validation set. By thus my question:
Is it normal to apply normalization to data, which has to be classified, or does the bad performance of my network without this techniques mean, that my model is bad in the sense, that it has failed to generalize and over fitted?
P.S. with normalization used on 'to classify' images, my model performs quite well (about 90% accuracy), without below 30%.
Additional info: model: convolutional neural network with keras and tensorflow.

It goes without saying (although admittedly it is seldom mentioned explicitly in introductory tutorials, hence the frequent frustration of beginners) that new data fed to the model for classification have to undergo the very same pre-processing steps followed for the training (and test) data.
Some common sense is certainly expected here: in all kinds of ML modeling, new input data are expected to have the same "general form" with the original data used for training & testing; the opposite case (i.e. what you have been trying to perform), if you stop for a moment to think about it, you should be able to convince yourself that does not make much sense...
The following answers may help you clarify the idea, illustrating also the case of inverse transforming the predictions whenever necessary:
How to predict a function/table using Keras?
Getting very bad prediction with KerasRegressor

Related

Pretraining Deep Learning Model for Weight Initialization

When pretraining Deep Learning model (lets say a deep convolutional neural netowork) in order to achieve good weight initialization, do I use entire training set without validation (so that I avoid information leak) or just subset of training set?
If you want to fine-tune your network after training it on your dataset then you can use the same dataset (making sure that the data in the training/test, and validation sets do not switch around). What you can also do as 'pre-training' is to download a model that is already trained on a similar dataset/problem to yours and then training it on your dataset. This is known as transfer learning and works well for similar problems, but of course the bigger the gap between the 2 problems the more you need to train.
In conclusion: you can use any dataset as long as the validation set remains hidden from the network.
I think if we divide the dataset into training, validation and test data, it will be more useful. Keeping a completely new test data aside and validating the model with only validation data is a good choice. Entire training data should be used for training.

Do trained weights depend on the order in which trained data has been input?

Suppose one makes a neural network using Keras. Do the trained weights depend on the order in which the training data has been fed into the system ? Is it ok to feed data belonging to one category first and then data belonging to another category or should they be random?
As the training will be done in batches, which means optimizing the weights on data chunk by chunk, the main assumption is that the batches of data are somewhat representative of the dataset. To make it representative it is thus better to randomly sample the data.
Bottomline : It will theoritically learn better if you feed randomly the neural network. I strongly advise yo to shuffle your dataset when you feed it in training mode (and there is an option in the .fit() function).
In inference mode, if you only want to make a forward pass on the neural net, then the order doesn't matter at all since you don't change the weights.
I hope this clarifies things a bit for you :-)
Nassim answer is believed to be True for small networks and datasets but recent articles (or e.g. this one) makes us believe that for deeper networks (with more than 4 layers) - not shuffling your data set might be considered as some kind of regularization - as poor minima are expected to be deep but small and good minima are expected to be wide and hard to leave.
In case of inference time - the only way where this might harm your inference process is when you are using a training distribution of your data in a highly coupled manner - e.g. using BatchNormalization or Dropout like in a training phase (this is sometimes used for some kinds of Bayesian Deep Learning).

Using Convolution Neural network as Binary classifiers

Given any image I want my classifier to tell if it is Sunflower or not. How can I go about creating the second class ? Keeping the set of all possible images - {Sunflower} in the second class is an overkill. Is there any research in this direction ? Currently my classifier uses a neural network in the final layer. I have based it upon the following tutorial :
https://github.com/torch/tutorials/tree/master/2_supervised
I am taking images with 254x254 as the input.
Would SVM help in the final layer ? Also I am open to using any other classifier/features that might help me in this.
The standard approach in ML is that:
1) Build model
2) Try to train on some data with positive\negative examples (start with 50\50 of pos\neg in training set)
3) Validate it on test set (again, try 50\50 of pos\neg examples in test set)
If results not fine:
a) Try different model?
b) Get more data
For case #b, when deciding which additional data you need the rule of thumb which works for me nicely would be:
1) If classifier gives lots of false positive (tells that this is a sunflower when it is actually not a sunflower at all) - get more negative examples
2) If classifier gives lots of false negative (tells that this is not a sunflower when it is actually a sunflower) - get more positive examples
Generally, start with some reasonable amount of data, check the results, if results on train set or test set are bad - get more data. Stop getting more data when you get the optimal results.
And another thing you need to consider, is if your results with current data and current classifier are not good you need to understand if the problem is high bias (well, bad results on train set and test set) or if it is a high variance problem (nice results on train set but bad results on test set). If you have high bias problem - more data or more powerful classifier will definitely help. If you have a high variance problem - more powerful classifier is not needed and you need to thing about the generalization - introduce regularization, remove couple of layers from your ANN maybe. Also possible way of fighting high variance is geting much, MUCH more data.
So to sum up, you need to use iterative approach and try to increase the amount of data step by step, until you get good results. There is no magic stick classifier and there is no simple answer on how much data you should use.
It is a good idea to use CNN as the feature extractor, peel off the original fully connected layer that was used for classification and add a new classifier. This is also known as the transfer learning technique that has being widely used in the Deep Learning research community. For your problem, using the one-class SVM as the added classifier is a good choice.
Specifically,
a good CNN feature extractor can be trained on a large dataset, e.g. ImageNet,
the one-class SVM can then be trained using your 'sunflower' dataset.
The essential part of solving your problem is the implementation of the one-class SVM, which is also known as anomaly detection or novelty detection. You may refer http://scikit-learn.org/stable/modules/outlier_detection.html for some insights about the method.

Model selection with dropout training neural network

I've been studying neural networks for a bit and recently learned about the dropout training algorithm. There are excellent papers out there to understand how it works, including the ones from the authors.
So I built a neural network with dropout training (it was fairly easy) but I'm a bit confused about how to perform model selection. From what I understand, looks like dropout is a method to be used when training the final model obtained through model selection.
As for the test part, papers always talk about using the complete network with halved weights, but they do not mention how to use it in the training/validation part (at least the ones I read).
I was thinking about using the network without dropout for the model selection part. Say that makes me find that the net performs well with N neurons. Then, for the final training (the one I use to train the network for the test part) I use 2N neurons with dropout probability p=0.5. That assures me to have exactly N neurons active on average, thus using the network at the right capacity most of the time.
Is this a correct approach?
By the way, I'm aware of the fact that dropout might not be the best choice with small datasets. The project I'm working on has academic purposes, so it's not really needed that I use the best model for the data, as long as I stick with machine learning good practices.
First of all, model selection and the training of a particular model are completely different issues. For model selection, you would usually need a data set that is completely independent of both training set used to build the model and test set used to estimate its performance. So if you're doing for example a cross-validation, you would need an inner cross-validation (to train the models and estimate the performance in general) and an outer cross-validation to do the model selection.
To see why, consider the following thought experiment (shamelessly stolen from this paper). You have a model that makes a completely random prediction. It has a number of parameters that you can set, but have no effect. If you're trying different parameter settings long enough, you'll eventually get a model that has a better performance than all the others simply because you're sampling from a random distribution. If you're using the same data for all of these models, this is the model you will choose. If you have a separate test set, it will quickly tell you that there is no real effect because the performance of this parameter setting that achieves good results during the model-building phase is not better on the separate set.
Now, back to neural networks with dropout. You didn't refer to any particular paper; I'm assuming that you mean Srivastava et. al. "Dropout: A Simple Way to Prevent Neural Networks from Overfitting". I'm not an expert on the subject, but the method to me seems to be similar to what's used in random forests or bagging to mitigate the flaws an individual learner may exhibit by applying it repeatedly in slightly different contexts. If I understood the method correctly, essentially what you end up with is an average over several possible models, very similar to random forests.
This is a way to make an individual model better, but not for model selection. The dropout is a way of adjusting the learned weights for a single neural network model.
To do model selection on this, you would need to train and test neural networks with different parameters and then evaluate those on completely different sets of data, as described in the paper I've referenced above.

How to approach machine learning problems with high dimensional input space?

How should I approach a situtation when I try to apply some ML algorithm (classification, to be more specific, SVM in particular) over some high dimensional input, and the results I get are not quite satisfactory?
1, 2 or 3 dimensional data can be visualized, along with the algorithm's results, so you can get the hang of what's going on, and have some idea how to aproach the problem. Once the data is over 3 dimensions, other than intuitively playing around with the parameters I am not really sure how to attack it?
What do you do to the data? My answer: nothing. SVMs are designed to handle high-dimensional data. I'm working on a research problem right now that involves supervised classification using SVMs. Along with finding sources on the Internet, I did my own experiments on the impact of dimensionality reduction prior to classification. Preprocessing the features using PCA/LDA did not significantly increase classification accuracy of the SVM.
To me, this totally makes sense from the way SVMs work. Let x be an m-dimensional feature vector. Let y = Ax where y is in R^n and x is in R^m for n < m, i.e., y is x projected onto a space of lower dimension. If the classes Y1 and Y2 are linearly separable in R^n, then the corresponding classes X1 and X2 are linearly separable in R^m. Therefore, the original subspaces should be "at least" as separable as their projections onto lower dimensions, i.e., PCA should not help, in theory.
Here is one discussion that debates the use of PCA before SVM: link
What you can do is change your SVM parameters. For example, with libsvm link, the parameters C and gamma are crucially important to classification success. The libsvm faq, particularly this entry link, contains more helpful tips. Among them:
Scale your features before classification.
Try to obtain balanced classes. If impossible, then penalize one class more than the other. See more references on SVM imbalance.
Check the SVM parameters. Try many combinations to arrive at the best one.
Use the RBF kernel first. It almost always works best (computationally speaking).
Almost forgot... before testing, cross validate!
EDIT: Let me just add this "data point." I recently did another large-scale experiment using the SVM with PCA preprocessing on four exclusive data sets. PCA did not improve the classification results for any choice of reduced dimensionality. The original data with simple diagonal scaling (for each feature, subtract mean and divide by standard deviation) performed better. I'm not making any broad conclusion -- just sharing this one experiment. Maybe on different data, PCA can help.
Some suggestions:
Project data (just for visualization) to a lower-dimensional space (using PCA or MDS or whatever makes sense for your data)
Try to understand why learning fails. Do you think it overfits? Do you think you have enough data? Is it possible there isn't enough information in your features to solve the task you are trying to solve? There are ways to answer each of these questions without visualizing the data.
Also, if you tell us what the task is and what your SVM output is, there may be more specific suggestions people could make.
You can try reducing the dimensionality of the problem by PCA or the similar technique. Beware that PCA has two important points. (1) It assumes that the data it is applied to is normally distributed and (2) the resulting data looses its natural meaning (resulting in a blackbox). If you can live with that, try it.
Another option is to try several parameter selection algorithms. Since SVM's were already mentioned here, you might try the approach of Chang and Li (Feature Ranking Using Linear SVM) in which they used linear SVM to pre-select "interesting features" and then used RBF - based SVM on the selected features. If you are familiar with Orange, a python data mining library, you will be able to code this method in less than an hour. Note that this is a greedy approach which, due to its "greediness" might fail in cases where the input variables are highly correlated. In that case, and if you cannot solve this problem with PCA (see above), you might want to go to heuristic methods, which try to select best possible combinations of predictors. The main pitfall of this kind of approaches is the high potential of overfitting. Make sure you have a bunch "virgin" data that was not seen during the entire process of model building. Test your model on that data only once, after you are sure that the model is ready. If you fail, don't use this data once more to validate another model, you will have to find a new data set. Otherwise you won't be sure that you didn't overfit once more.
List of selected papers on parameter selection:
Feature selection for high-dimensional genomic microarray data
Oh, and one more thing about SVM. SVM is a black box. You better figure out what is the mechanism that generate the data and model the mechanism and not the data. On the other hand, if this would be possible, most probably you wouldn't be here asking this question (and I wouldn't be so bitter about overfitting).
List of selected papers on parameter selection
Feature selection for high-dimensional genomic microarray data
Wrappers for feature subset selection
Parameter selection in particle swarm optimization
I worked in the laboratory that developed this Stochastic method to determine, in silico, the drug like character of molecules
I would approach the problem as follows:
What do you mean by "the results I get are not quite satisfactory"?
If the classification rate on the training data is unsatisfactory, it implies that either
You have outliers in your training data (data that is misclassified). In this case you can try algorithms such as RANSAC to deal with it.
Your model(SVM in this case) is not well suited for this problem. This can be diagnozed by trying other models (adaboost etc.) or adding more parameters to your current model.
The representation of the data is not well suited for your classification task. In this case preprocessing the data with feature selection or dimensionality reduction techniques would help
If the classification rate on the test data is unsatisfactory, it implies that your model overfits the data:
Either your model is too complex(too many parameters) and it needs to be constrained further,
Or you trained it on a training set which is too small and you need more data
Of course it may be a mixture of the above elements. These are all "blind" methods to attack the problem. In order to gain more insight into the problem you may use visualization methods by projecting the data into lower dimensions or look for models which are suited better to the problem domain as you understand it (for example if you know the data is normally distributed you can use GMMs to model the data ...)
If I'm not wrong, you are trying to see which parameters to the SVM gives you the best result. Your problem is model/curve fitting.
I worked on a similar problem couple of years ago. There are tons of libraries and algos to do the same. I used Newton-Raphson's algorithm and a variation of genetic algorithm to fit the curve.
Generate/guess/get the result you are hoping for, through real world experiment (or if you are doing simple classification, just do it yourself). Compare this with the output of your SVM. The algos I mentioned earlier reiterates this process till the result of your model(SVM in this case) somewhat matches the expected values (note that this process would take some time based your problem/data size.. it took about 2 months for me on a 140 node beowulf cluster).
If you choose to go with Newton-Raphson's, this might be a good place to start.

Resources