one hot encoding of output labels - machine-learning

While I understand the need to one hot encode features in the input data, how does one hot encoding of output labels actually help? The tensor flow MNIST tutorial encourages one hot encoding of output labels. The first assignment in CS231n(stanford) however does not suggest one hot encoding. What's the rationale behind choosing / not choosing to one hot encode output labels?
Edit: Not sure about the reason for the downvote, but just to elaborate more, I missed out mentioning the softmax function along with the cross entropy loss function, which is normally used in multinomial classification. Does it have something to do with the cross entropy loss function?
Having said that, one can calculate the loss even without the output labels being one hot encoded.

One hot vector is used in cases where output is not cardinal. Lets assume you encode your output as integer giving each label a number.
The integer values have a natural ordered relationship between each other and machine learning algorithms may be able to understand and harness this relationship, but your labels may be unrelated. There may be no similarity in your labels. For categorical variables where no such ordinal relationship exists, the integer encoding is not good.
In fact, using this encoding and allowing the model to assume a natural ordering between categories may result in unexpected results where model predictions are halfway between categories categories.
What a mean by that?
The idea is that if we train an ML algorithm - for example a neural network - it’s going to think that a cat (which is 1) is halfway between a dog and a bird, because they are 0 and 2 respectively. We don’t want that; it’s not true and it’s an extra thing for the algorithm to learn.
The same may happen when data is encoded in n dimensional space and vector has a continuous value. The result may be hard to interpret and map back to labels.
In this case, a one-hot encoding can be applied to label representation as it has clear interpretation and its values are separated each is in different dimension.
If you need more information or would like to see the reason for one-hot encoding for the perspective of loss function see https://www.linkedin.com/pulse/why-using-one-hot-encoding-classifier-training-adwin-jahn/

Related

best practices for using Categorical Variables in H2O?

I'm trying to use H2O's Random Forest for a multinominal classification into 71 classes with 38,000 training set examples. I have one features that is a string that in many cases are predictive, so I want to use it as a categorical feature.
The hitch is that even after canonicalizing the strings (uppercase, stripping out numbers, punctuation, etc.), I still have 7,000 different strings (some due to spelling or OCR errors, etc.) I have code to remove strings that are relatively rare, but I'm not sure what a reasonable cut off value is. (I can't seem to find any help in the documentation.)
I'm also not sure what to due with nbin_cats hyperparameter. Should I make it equal to the number of different categorical variables I have? [added: default for nbin_cats is 1024 and I'm well below that at around 300 different categorical values, so I guess I don't have to do anything with this parameter]
I'm also thinking perhaps if a categorical value is associated with too many different categories that I'm trying to predict, maybe I should drop it as well.
I'm also guessing I need to increase the tree depth to handle this better.
Also, is there a special value to indicate "don't know" for the strings that I am filtering out? (I'm mapping it to a unique string but I'm wondering if there is a better value that indicates to H2O that the categorical value is unknown.)
Many thanks in advance.
High cardinality categorical predictors can sometimes hurt model performance, and specifically in the case of tree-based models, the tree ensemble (GBM or Random Forest) ends up memorizing the training data. The model has a poor time generalizing on validation data.
A good indication of whether this is happening is if your string/categorical column has very high variable importance. This means that the trees are continuing to split on this column to memorize the training data. Another indication is if you see much smaller error on your training data than on your validation data. This means the trees are overfitting to the training data.
Some methods for handling high cardinality predictors are:
removing the predictor from the model
performing categorical encoding [pdf]
performing grid search on nbins_cats and categorical_encoding
There is a Python example in the H2O tutorials GitHub repo that showcases the effects of removing the predictor from the model and performing grid search here.

Standardization before or after categorical encoding?

I'm working on a regression algorithm, in this case k-NearestNeighbors to predict a certain price of a product.
So I have a Training set which has only one categorical feature with 4 possible values. I've dealt with it using a one-to-k categorical encoding scheme which means now I have 3 more columns in my Pandas DataFrame with a 0/1 depending the value present.
The other features in the DataFrame are mostly distances like latitud - longitude for locations and prices, all numerical.
Should I standardize (Gaussian distribution with zero mean and unit variance) and normalize before or after the categorical encoding?
I'm thinking it might be benefitial to normalize after encoding so that every feature is to the estimator as important as every other when measuring distances between neighbors but I'm not really sure.
Seems like an open problem, thus I'd like to answer even though it's late. I am also unsure how much the similarity between the vectors would be affected, but in my practical experience you should first encode your features and then scale them. I have tried the opposite with scikit learn preprocessing.StandardScaler() and it doesn't work if your feature vectors do not have the same length: scaler.fit(X_train) yields ValueError: setting an array element with a sequence. I can see from your description that your data have a fixed number of features, but I think for generalization purposes (maybe you have new features in the future?), it's good to assume that each data instance has a unique feature vector length. For instance, I transform my text documents into word indices with Keras text_to_word_sequence (this gives me the different vector length), then I convert them to one-hot vectors and then I standardize them. I have actually not seen a big improvement with the standardization. I think you should also reconsider which of your features to standardize, as dummies might not need to be standardized. Here it doesn't seem like categorical attributes need any standardization or normalization. K-nearest neighbors is distance-based, thus it can be affected by these preprocessing techniques. I would suggest trying either standardization or normalization and check how different models react with your dataset and task.
After. Just imagine that you have not numerical variables in your column but strings. You can't standardize strings - right? :)
But given what you wrote about categories. If they are represented with values, I suppose there is some kind of ranking inside. Probably, you can use raw column rather than one-hot-encoded. Just thoughts.
You generally want to standardize all your features so it would be done after the encoding (that is assuming that you want to standardize to begin with, considering that there are some machine learning algorithms that do not need features to be standardized to work well).
So there is 50/50 voting on whether to standardize data or not.
I would suggest, given the positive effects in terms of improvement gains no matter how small and no adverse effects, one should do standardization before splitting and training estimator

Features of vector form of sentences for opinion finding.

I want to find the opinion of a sentence either positive or negative. For example talk about only one sentence.
The play was awesome
If change it to vector form
[0,0,0,0]
After searching through the Bag of words
bad
naughty
awesome
The vector form becomes
[0,0,0,1]
Same for other sentences. Now I want to pass it to the machine learning algorithm for training it. How can I train the network using these multiple vectors? (for finding the opinion of unseen sentences) Obviously not! Because the input is fix in neural network. Is there any way? The above procedure is just my thinking. Kindly correct me if I am wrong. Thanks in advance.
Since your intuitive input format is "Sentence". Which is, indeed, a string of tokens with arbitrary length. Abstracting sentences as token series is not a good choice for many existing algorithms only works on determined format of inputs.
Hence, I suggest try using tokenizer on your entire training set. This will give you vectors of length of the dictionary, which is fixed for given training set.
Because when the length of sentences vary drastically, then size of the dictionary always keeps stable.
Then you can apply Neural Networks(or other algorithms) to the tokenized vectors.
However, vectors generated by tokenizer is extremely sparse because you only work on sentences rather than articles.
You can try LDA (supervised, not PCA), to reduce the dimension as well as amplify the difference.
That will keep the essential information of your training data as well as express your data at fixed size, while this "size" is not too large.
By the way, you may not have to label each word by its attitude since the opinion of a sentence also depends on other kind of words.
Simple arithmetics on number of opinion-expressing words many leave your model highly biased. Better label the sentences and leave the rest job to classifiers.
For the confusions
PCA and LDA are Dimensional Reduction techniques.
difference
Let's assume each tuple of sample is denoted as x (1-by-p vector).
p is too large, we don't like that.
Let's find a matrix A(p-by-k) in which k is pretty small.
So we get reduced_x = x*A, and most importantly, reduced_x must
be able to represent x's characters.
Given labeled data, LDA can provide proper A that can maximize
distance between reduced_x of different classes, and also minimize
the distance within identical classes.
In simple words: compress data, keep information.
When you've got
reduced_x, you can define training data: (reduced_x|y) where y is
0 or 1.

How to explain feature importance after one-hot encode used for decision tree

I know decision tree has feature_importance attribute calculated by Gini and it could be used to check which features are more important.
However, for application in scikit-learn or Spark, it only accepts numeric attribute, so I have to transfer string attribute to numeric attribute and then do one-hot encoder on that. When features are put into decision tree model, it's 0-1 encoded other than original format, my question is, how to explain feature importance for original attributes? should I avoid one-hot encoder when try to explain feature importance?
Thanks.
Conceptually, you may want to use something along the lines of permutation importance. The basic idea, is that you take your original dataset, and randomly shuffle the values of each column 1 at a time. Then, you score your perturbed data with the model and compare the performance to the original performance. If done 1 column at a time, you can assess the performance hit you take by destroying each variable, indexing it to the variable that had the most loss (which would become 1, or 100%). If you can do this to your original dataset, prior to the 1 hot encoding, then you'll be getting an importance measure that groups them together overall.

What type of ML is this? Algorithm to repeatedly choose 1 correct candidate from a pool (or none)

I have a set of 3-5 black box scoring functions that assign positive real value scores to candidates.
Each is decent at ranking the best candidate highest, but they don't always agree--I'd like to find how to combine the scores together for an optimal meta-score such that, among a pool of candidates, the one with the highest meta-score is usually the actual correct candidate.
So they are plain R^n vectors, but each dimension individually tends to have higher value for correct candidates. Naively I could just multiply the components, but I hope there's something more subtle to benefit from.
If the highest score is too low (or perhaps the two highest are too close), I just give up and say 'none'.
So for each trial, my input is a set of these score-vectors, and the output is which vector corresponds to the actual right answer, or 'none'. This is kind of like tech interviewing where a pool of candidates are interviewed by a few people who might have differing opinions but in general each tend to prefer the best candidate. My own application has an objective best candidate.
I'd like to maximize correct answers and minimize false positives.
More concretely, my training data might look like many instances of
{[0.2, 0.45, 1.37], [5.9, 0.02, 2], ...} -> i
where i is the ith candidate vector in the input set.
So I'd like to learn a function that tends to maximize the actual best candidate's score vector from the input. There are no degrees of bestness. It's binary right or wrong. However, it doesn't seem like traditional binary classification because among an input set of vectors, there can be at most 1 "classified" as right, the rest are wrong.
Thanks
Your problem doesn't exactly belong in the machine learning category. The multiplication method might work better. You can also try different statistical models for your output function.
ML, and more specifically classification, problems need training data from which your network can learn any existing patterns in the data and use them to assign a particular class to an input vector.
If you really want to use classification then I think your problem can fit into the category of OnevsAll classification. You will need a network (or just a single output layer) with number of cells/sigmoid units equal to your number of candidates (each representing one). Note, here your number of candidates will be fixed.
You can use your entire candidate vector as input to all the cells of your network. The output can be specified using one-hot encoding i.e. 00100 if your candidate no. 3 was the actual correct candidate and in case of no correct candidate output will be 00000.
For this to work, you will need a big data set containing your candidate vectors and corresponding actual correct candidate. For this data you will either need a function (again like multiplication) or you can assign the outputs yourself, in which case the system will learn how you classify the output given different inputs and will classify new data in the same way as you did. This way, it will maximize the number of correct outputs but the definition of correct here will be how you classify the training data.
You can also use a different type of output where each cell of output layer corresponds to your scoring functions and 00001 means that the candidate your 5th scoring function selected was the right one. This way your candidates will not have to be fixed. But again, you will have to manually set the outputs of the training data for your network to learn it.
OnevsAll is a classification technique where there are multiple cells in the output layer and each perform binary classification in between one of the classes vs all others. At the end the sigmoid with the highest probability is assigned 1 and rest zero.
Once your system has learned how you classify data through your training data, you can feed your new data in and it will give you output in the same way i.e. 01000 etc.
I hope my answer was able to help you.:)

Resources