This is the Input image. Need to extract text data out of it. What all steps to take to preprocess the image and what would be the best approach to build this system.
Related
I'm using the latest version of Tesseract (5.0), and I'm trying to determine whether or not I can insert some preprocessing steps that will -not- affect the form of the final image.
For example, I might start out with an image such
as this.
There are different levels of shadow/brightness, so I might use adaptive Gaussian thresholding to avoid shadows during binarization.
I will now run this through tesseract, with the hope of creating an OCR'd PDF in the end. However, I want the image that the end user (and I) see to be the full-color, original image, with the text from the transformed image underlaid
Is there a way to manage this? Or am I completely missing the point here.
I was provided an answer on another forum, and wanted to share it here.
Instead of using the built in PDF option in Tesseract, I used the hOCR setting. My pipeline went:
Preprocess image (thresholding, etc)
Run tesseract with the following command: tesseract example1.jpg example1 -l eng hocr
Use the hocr-pdf module from Ocropus to merge the hocr'd material with the ORIGINAL IMAGE, no preprocessing.
I want to use NiftyNet to implement Deep Learning on medical image processing. However, there is one thing I haven't figured out regarding the data input: how does it join the multi-modality images? I saw the demo of BRATS2017, they seems to use 4 different modalities, and in the configuration file, they just included the directory of the images and they claim it will "concatenate" the images. But I want to know more, as those images are 3D, how are they concatenated? [slice1-30]:[slice1-30].. or [slice1, slice1, slice1 ...]:[slice2, slice2, slice2...]?
And can we control the data organization part? If so, which file should I modify?
Any suggestion would be greatly appreciated!
In this case, the 3D images are concatenated in an additional dimension. You control the order they're concatenated in by specifying the order of files to load in the *.ini files.
However, as long as you're consistent, it shouldn't matter what order the modalities go in.
The images are concatenated in the channel dimension. For 2D images, the dimensions are NSSC: batch size, 2 spatial dimensions, then channel. For 3D images, the dimensions are NSSSC: batch size, 3 spatial dimensions, then channel.
I run caffe using an image_data_layer and don't want to create an LMDB or LevelDB for the data, But The compute_image_mean tool only works with LMDB/LevelDB databases.
Is there a simple solution for creating a mean file from a list of files (the same format that image_data_layer is using)?
You may notice that recent models (e.g., googlenet) do not use a mean file the same size as the input image, but rather a 3-vector representing a mean value per image channel. These values are quite "immune" to the specific dataset used (as long as it is large enough and contains "natural images").
So, as long as you are working with natural images you may use the same values as e.g., GoogLenet is using: B=104, G=117, R=123.
The simplest solution is to create a LMDB or LevelDB database of the image set.
The complicated solution is to write a tool similar to compute_image_mean, which takes image inputs and do the transformations and find the mean!
Apologies for tagging this just ImageJ - it's a problem regarding MicroManager, a microscopy plugin for it and I thought this would be best.
I'd recently taken images for an important experiment using MicroManager (a recent version, though I cannot recall the exact number). The IT services at my institution have recently been having some networking problems and my saved preferences for the software had been erased. I'd got half way through my experiment when I realised that I'd saved my images as separate image files (three greyscale TIFFs plus metadata text files) instead of OME-TIFF iamge stacks.
All of my ImageJ macros for image processing rely on having a multiple channel image stack, so this is a bit of a problem. Is there any easy way in MicroManager (or ImageJ) to bulk convert these single channel greyscale images into the OME-TIFF image stack after the images have already been taken?
Cheers.
You can start with a macro like this one:
// Convert your images to a stack
run("Images to Stack", "name=Stack title=[] use");
// The stack will default the images to time points. Convert to channels
run("Stack to Hyperstack...", "order=xyczt(default) channels=3 slices=1 frames=1 display=Color");
// Export as OME-TIFF
run("Bio-Formats Exporter");
This is designed to reconstruct one dataset at a time (open 3 images, run the macro and export the OME-TIFF).
If you don't want any dialogs to show you can pass an output directory to the Bio-Formats exporter:
run("Bio-Formats Exporter", "save=/path/to/image.ome.tif export compression=Uncompressed");
For the output file name you can get the original image name in the macro with getTitle()
There is also a template example on iterating over all the files in a directory, if you want to completely automate the macro. However this may take some tweaking since you want to operate on your images 3 at a time.
Hope that helps!
New user of hadoop and mapreduce, i would like to create a mapreduce job to do some measure on images. this why i would like to know if i can passe an image as input to mapreduce?if yes? any kind of example
thanks
No.. you cannot pass an image directly to a MapReduce job as it uses specific types of datatypes optimized for network serialization. I am not an image processing expert but I would recommend to have a look at HIPI framework. It allows image processing on top of MapReduce framework in a convenient manner.
Or if you really want to do it the native Hadoop way, you could do this by first converting the image file into a Hadoop Sequence file and then using the SequenceFileInputFormat to process the file.
Yes, you can totally do this.
With the limited information provided, I can only give you a very general answer.
Either way, you'll need to:
1) You will need to write a custom InputFormat that instead of taking chunks of files in HDFS locations (like TextInputFormat and SequenceFileInputFormat do), it actually passes to each map task the Image's HDFS path name. Reading the image from that won't be too hard.
If you plan to have a Reduce phase in which Images are passed around through the framework, you'll need to:
2) You will need to make an "ImageWritable" class that implements Writable (or WritableComparable if you're keying on the image). In your write() method, you'll need to serialize your image to a byte array. When you do this, what I would do is first write to the output an int/long which is the size of the array you're going to write. Lastly, you'll want to write the array as bytes.
In your read() method, you'll read an int/long first (which will describe the payload of the image), create an byte array of this size, and then read the bytes fully into your byte array up to the length of your int/long that you captured.
I'm not entirely sure what you're doing, but that's how I'd go about it.