Is the solution at tangent point an optimal solution? - machine-learning

From what I understood from this article, the blue circles are the level curves and the blue dot is the optimal solution that minimizes the cost function. The yellow circle is the L2-norm constraint.
The solution that we need is the one that minimizes the cost function as much as possible and also, at the same time, is within the circle. Meaning, the solution is the tangent point between the yellow circle and the level curve.
But, my question is how this can be the solution if the W values at the tangent point don't completely minimize the cost function? Only the blue dot is the one that minimizes the cost function.

Blue dot minimizes cost function, if there are no constraints.
If the minimization is constrained by L2 norm, then the blue dot cannot be a solution , as it violates the constrain. Thus, the point w* is solution instead.
The reason why to use the L2 constrain is that we are trying to minimize the error on test data, not on the train data (i.e. we are not directly interested in minimizing the loss function). Simpler solutions (with smaller L2 norm) tends to overfitt less, so we expect the gap between test and train error to be smaller (which is desirable).

Related

accuracy of dense optical flow

Currently I am learning dense optical flow by myself. To understand it, I conduct one experiment. I produce one image using Matlab. One box with a given grays value is placed under one uniform background and the box is translated two pixels in x and y directions in another image. The two images are input into the implementation of the algorithm called TV-L1. The generated motion vector outer of the box is not zero. Is the reason that the gradient outer of the box is zero? Is the values filled in from the values with large gradient value?
In Horn and Schunck's paper, it reads
In parts of the image where the brightness gradient is zero, the velocity
estimates will simply be averages of the neighboring velocity estimates. There
is no local information to constrain the apparent velocity of motion of the
brightness pattern in these areas.
The progress of this filling-in phenomena is similar to the propagation effects
in the solution of the heat equation for a uniform flat plate, where the time rate of change of temperature is proportional to the Laplacian.
Is it not possible to obtain correct motion vectors for pixels with small gradients? Or the experiment is not practical. In practical applications, this doesn't happen.
Yes, in so called homogenous image regions with very small gradients no information where a motion can dervided from exists. That's why the motion from your rectangle is propagated outer the border. If you give your background a texture this effect will be less dominant. I know such problem when it comes to estimate the ego-motion of a car. Then the streat makes a lot of problems cause of here homogenoutiy.
Two pioneers in this field Lukas&Kanade (LK) and Horn&Schunch (HS) are developed methods for computing Optical Flow (OF). Both rely on brightness constancy assumption which feature location pixel values between two sequence frames not change. This constraint may be expressed as two equations: I(x+dx,y+dy,t+dt)=I(x,y,t) and ∂I/∂x dx+∂I/∂y dy+∂I/∂t dt=0 by using a Taylor series expansion I(x+dx,y+dy,t+dt) , we get (x+dx,y+dy,t+dt)=I(x,y,t)+∂I/∂x dx+∂I/∂y dy+∂I/∂t dt… letting ∂x/∂t=u and ∂y/∂t=v and combining these equations we get the OF constraint equation: ∂I/∂t=∂I/∂t u+∂I/∂t v . The OF equation has more than one solution, so the different techniques diverge here. LK equations are derived assuming that pixels in a neighborhood of each tracked feature move with the same velocity as the feature. In OpenCV, to catch large motions with a small window size (to keep the “same local velocity” assumption).

Algorithm for selecting outer points on a graph ("rich" convex hull)

I'm looking for an efficient way of selecting a relatively large portion of points (2D Euclidian graph) that are the furthest away from the center. This resembles the convex hull, but would include (many) more points. Further criteria:
The number of points in the selection / set ("K") must be within a specified range. Most likely it won't be very narrow, but it most work for different ranges (eg. 0.01*N < K < 0.05*N as well as 0.1*N < K < 0.2*N).
The algorithm must be able to balance distance from the center and "local density". If there are dense areas near the upper part of the graph range, but sparse areas near the lower part, then the algorithm must make sure to select some points from the lower part even if they are closer to the center than the points in the upper region. (See example below)
Bonus: rather than simple distance from center, taking into account distance to a specific point (or both a point and the center) would be perfect.
My attempts so far have focused on using "pigeon holing" (divide graph into CxR boxes, assign points to boxes based on coordinates) and selecting "outer" boxes until we have sufficient points in the set. However, I haven't been successful at balancing the selection (dense regions over-selected because of fixed box size) nor at using a selected point as reference instead of (only) the center.
I've (poorly) drawn an Example: The red dots are the points, the green shape is an example of what I want (outside the green = selected). For sparse regions, the bounding shape comes closer to the center to find suitable points (but doesn't necessarily find any, if they're too close to the center). The yellow box is an example of what my Pigeon Holing based algorithms does. Even when trying to adjust for sparser regions, it doesn't manage well.
Any and all ideas are welcome!
I don't think there are any standard algorithms that will give you what you want. You're going to have to get creative. Assuming your points are embedded in 2D Euclidean space here are some ideas:
Iteratively compute several convex hulls. For example, compute the convex hull, keep the points that are part of the convex hull, then compute another convex hull ignoring the points from the original convex hull. Continue to do this until you have a sufficient number of points, essentially plucking off points on the perimeter for each iteration. The only problem with this approach is that it will not work well for concavities in your data set (e.g., the one on the bottom of your sample you posted).
Fit a Gaussian to your data and keep everything > N standard
deviations away from the mean (where N is a value that you'd have to
choose). This should work pretty well if your data is Gaussian. If
it isn't, you could always model it with several Gaussians (instead
of one), and keep points with a joint probability less than some threshold. Using multiple Gaussians will probably handle concavities decently. References:
http://en.wikipedia.org/wiki/Gaussian_function
How to fit a gaussian to data in matlab/octave?\
Use Kernel Density Estimation - If you create a kernel density
surface, you could slice the surface at some height (e.g., turning
it into a plateau), giving you a perimeter shape (the shape of the
plateau) around the points. The trick would be to slice it at the
right location though, because you could end up getting no points
outside of the shape, but with the right selection you could easily
get the green shape you drew. This approach will work well and give you the green shape in your example if you choose the slice point wisely (which may be difficult to do). The big drawback of this approach is that it is very computationally expensive. More information:
http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
Use alpha shapes to get a general shape the wraps tightly around
the outside perimeter of the point set. Then erode the shape a
little to force some points outside of the shape. I don't have a lot of experience with alpha shapes, but this approach will also be quite computationally expensive. More info:
http://doc.cgal.org/latest/Alpha_shapes_2/index.html

Is Triangle inequality necessary for kmeans?

I wonder if Triangle inequality is necessary for the distance measure used in kmeans.
k-means is designed for Euclidean distance, which happens to satisfy triangle inequality.
Using other distance functions is risky, as it may stop converging. The reason however is not the triangle inequality, but the mean might not minimize the distance function. (The arithmetic mean minimizes the sum-of-squares, not arbitrary distances!)
There are faster methods for k-means that exploit the triangle inequality to avoid recomputations. But if you stick to classic MacQueen or Lloyd k-means, then you do not need the triangle inequality.
Just be careful with using other distance functions to not run into an infinite loop. You need to prove that the mean minimizes your distances to the cluster centers. If you cannot prove this, it may fail to converge, as the objective function no longer decreases monotonically! So you really should try to prove convergence for your distance function!
Well, classical kmeans is defined on Euclidean space with L2 distance, so you get triangle inequality automatically from that (triangle inequality is part of how a distance/metric is defined). If you are using a non-euclidean metric, you would need to define what is the meaning of the "mean", amongst other things.
If you don't have triangle inequality, it means that two points could be very far from each other, but both can be close to a third point. You need to think how you would like to interpret this case.
Having said all that, I have in the past used average linkage hierarchical clustering with a distance measure that did not fulfill triangle inequality amongst other things, and it worked great for my needs.

How is a homography calculated?

I am having quite a bit of trouble understanding the workings of plane to plane homography. In particular I would like to know how the opencv method works.
Is it like ray tracing? How does a homogeneous coordinate differ from a scale*vector?
Everything I read talks like you already know what they're talking about, so it's hard to grasp!
Googling homography estimation returns this as the first link (at least to me):
http://cseweb.ucsd.edu/classes/wi07/cse252a/homography_estimation/homography_estimation.pdf. And definitely this is a poor description and a lot has been omitted. If you want to learn these concepts reading a good book like Multiple View Geometry in Computer Vision would be far better than reading some short articles. Often these short articles have several serious mistakes, so be careful.
In short, a cost function is defined and the parameters (the elements of the homography matrix) that minimize this cost function are the answer we are looking for. A meaningful cost function is geometric, that is, it has a geometric interpretation. For the homography case, we want to find H such that by transforming points from one image to the other the distance between all the points and their correspondences be minimum. This geometric function is nonlinear, that means: 1-an iterative method should be used to solve it, in general, 2-an initial starting point is required for the iterative method. Here, algebraic cost functions enter. These cost functions have no meaningful/geometric interpretation. Often designing them is more of an art, and for a problem usually you can find several algebraic cost functions with different properties. The benefit of algebraic costs is that they lead to linear optimization problems, hence a closed form solution for them exists (that is a one shot /non-iterative method). But the downside is that the found solution is not optimal. Therefore, the general approach is to first optimize an algebraic cost and then use the found solution as starting point for an iterative geometric optimization. Now if you google for these cost functions for homography you will find how usually these are defined.
In case you want to know what method is used in OpenCV simply need to have a look at the code:
http://code.opencv.org/projects/opencv/repository/entry/trunk/opencv/modules/calib3d/src/fundam.cpp#L81
This is the algebraic function, DLT, defined in the mentioned book, if you google homography DLT should find some relevant documents. And then here:
http://code.opencv.org/projects/opencv/repository/entry/trunk/opencv/modules/calib3d/src/fundam.cpp#L165
An iterative procedure minimizes the geometric cost function.It seems the Gauss-Newton method is implemented:
http://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm
All the above discussion assumes you have correspondences between two images. If some points are matched to incorrect points in the other image, then you have got outliers, and the results of the mentioned methods would be completely off. Robust (against outliers) methods enter here. OpenCV gives you two options: 1.RANSAC 2.LMeDS. Google is your friend here.
Hope that helps.
To answer your question we need to address 4 different questions:
1. Define homography.
2. See what happens when noise or outliers are present.
3. Find an approximate solution.
4. Refine it.
Homography in a 3x3 matrix that maps 2D points. The mapping is linear in homogeneous coordinates: [x2, y2, 1]’ ~ H * [x1, y1, 1]’, where ‘ means transpose (to write column vectors as rows) and ~ means that the mapping is up to scale. It is easier to see in Cartesian coordinates (multiplying nominator and denominator by the same factor doesn’t change the result)
x2 = (h11*x1 + h12*y1 + h13)/(h31*x1 + h32*y1 + h33)
y2 = (h21*x1 + h22*y1 + h23)/(h31*x1 + h32*y1 + h33)
You can see that in Cartesian coordinates the mapping is non-linear, but for now just keep this in mind.
We can easily solve a former set of linear equations in Homogeneous coordinates using least squares linear algebra methods (see DLT - Direct Linear Transform) but this unfortunately only minimizes an algebraic error in homography parameters. People care more about another kind of error - namely the error that shifts points around in Cartesian coordinate systems. If there is no noise and no outliers two erros can be identical. However the presence of noise requires us to minimize the residuals in Cartesian coordinates (residuals are just squared differences between the left and right sides of Cartesian equations). On top of that, a presence of outliers requires us to use a Robust method such as RANSAC. It selects the best set of inliers and rejects a few outliers to make sure they don’t contaminate our solution.
Since RANSAC finds correct inliers by random trial and error method over many iterations we need a really fast way to compute homography and this would be a linear approximation that minimizes parameters' error (wrong metrics) but otherwise is close enough to the final solution (that minimizes squared point coordinate residuals - a right metrics). We use a linear solution as a guess for further non-linear optimization;
The final step is to use our initial guess (solution of linear system that minimized Homography parameters) in solving non-linear equations (that minimize a sum of squared pixel errors). The reason to use squared residuals instead of their absolute values, for example, is because in Gaussian formula (describes noise) we have a squared exponent exp(x-mu)^2, so (skipping some probability formulas) maximum likelihood solutions requires squared residuals.
In order to perform a non-linear optimization one typically employs a Levenberg-Marquardt method. But in the first approximation one can just use a gradient descent (note that gradient points uphill but we are looking for a minimum thus we go against it, hence a minus sign below). In a nutshell, we go through a set of iterations 1..t..N selecting homography parameters at iteration t as param(t) = param(t-1) - k * gradient, where gradient = d_cost/d_param.
Bonus material: to further minimize the noise in your homography you can try a few tricks: reduce a search space for points (start tracking your points); use different features (lines, conics, etc. that are also transformed by homography but possibly have a higher SNR); reject impossible homographs to speed up RANSAC (e.g. those that correspond to ‘impossible’ point movements); use low pass filter for small changes in Homographies that may be attributed to noise.

SIFT Keypoint Location

I am currently working in SIFT, I had generated the difference of Gaussian and the extrema image layers. Can anyone explain to me how to use Hessian matrix to eliminate the low contrast keypoint?
A good keypoint is a corner. This comes from the Harris corner work and the Good features to track (KLT) papers first, then emphasized by the Mikolajczyk and Schmid paper.
Intuitively, a corner is a good feature because it is an intersection of two lines, while a single line segment can be moved along its direction, thus causing a less accurate localization.
A line segment is an edge, i.e., a first order derivative (gradient). A corner is an edge that changes its direction abruptly. This is measured by a second order derivative, hence the use of the Hessian matrix that contains the values of the directional second derivatives.

Resources