How to assert an exception is expected - f#

I'm on a Mac running F# using .NET Core 2.0.
I have a function that looks like this:
let rec evaluate(x: string) =
match x with
// ... cases
| _ -> failwith "illogical"
I'd like to write an Expecto test that validates that the exception is thrown as expected, something along the lines of:
// doesn't compile
testCase "non-logic" <| fun _ ->
Expect.throws (evaluate "Kirkspeak") "illogical"
The error is
This expression was expected to have type
'unit -> unit' but here has type 'char'
unit -> unit makes me this is analogous to Assert.Fail, which is not what I want.
Being somewhat new to F# and Expecto, I'm having trouble locating a working example of asserting that an exception is thrown as expected. Does anyone have one?

Expect.throws has the signature (unit -> unit) -> string -> unit so the function you want to test must be (unit -> unit) or be wrapped inside a function that is (unit -> unit).
let rec evaluate (x: string) : char =
match x with
// ... cases
| _ -> failwith "illogical"
The compiler error is telling you that the function you passed to Expect.throws does not have the right signature yet.
[<Tests>]
let tests = testList "samples" [
test "non-logic" {
// (evaluate "Kirkspeak") is (string -> char)
// but expecto wants (unit -> unit)
Expect.throws (evaluate "Kirkspeak") "illogical"
}
]
[<EntryPoint>]
let main argv =
Tests.runTestsInAssembly defaultConfig argv
One way to make it work is to change
Expect.throws (evaluate "Kirkspeak") "illogical"
to
// you could instead do (fun () -> ...)
// but one use of _ as a parameter is for when you don't care about the argument
// the compiler will infer _ to be unit
Expect.throws (fun _ -> evaluate "Kirkspeak" |> ignore) "illogical"
Now expecto is happy!
This answer was the way I thought through it. It is usually helpful to follow the type signatures.
EDIT: I saw your error message saying This expression was expected to have type 'unit -> unit' but here has type 'char' so I updated my answer to match it.

Related

final output of Result, in F#

This seems like a question that has an ultra simple answer, but I can't think of it:
Is there a built in method, within Result, for:
let (a: Result<'a, 'a>) = ...
match a with
| Ok x -> x
| Error e -> e
No, because this function requires the Ok type and the Error type to be the same, which makes Result less general.
No, there isn't any function which will allow you to do so. But you can easily define it:
[<RequireQualifiedAccess>]
module Result =
let join (value: Result<'a, 'a>) =
match value with
| Ok v -> v
| Error e -> e
let getResult s =
if System.String.IsNullOrEmpty s then
Error s
else
Ok s
let a =
getResult "asd"
|> Result.join
|> printfn "%s"
It doesn't make Result less general (as said by #brianberns), because it's not an instance member. Existence of Unwrap doesn't make Task less general
Update
After more scrupulous searching inside FSharpPlus and FSharpx.Extras I've found necessary function. It's signature ('a -> 'c) -> ('b -> 'c) -> Result<'a,'b> -> c instead of Result<'a, 'a> -> 'a and it's called Result.either in both libraries (source 1 and source 2). So in order to get value we may pass id as both parameters:
#r "nuget:FSharpPlus"
open FSharpPlus
// OR
#r "nuget:FSharpx.Extras"
open FSharpx
getResult "asd"
|> Result.either id id
|> printfn "%s"
Also it's may be useful to define shortcut and call it Result.join or Result.fromEither as it's called in Haskell

F# type inference of generic type arguments with numeric suffix?

While playing around with map, apply and such to better understand them, the inferred generic types on the following code turned out not be what I expected, but the code still works:
Note: the // comments are written by me so I can show them, but they are the exact copy of the auto annotations printed by Ionide.
let map2 fOk fErr (a : Result<'a,'e>) (b : Result<'b,'e>)= // ('a -> 'b -> 'a0) -> ('e -> 'e -> 'e) -> Result<'a,'e> -> Result<'b,'e> -> Result<'a,'e>
match a, b with
| Ok aOk, Ok bOk -> fOk aOk bOk |> Ok
| Error aErr, Error bErr -> fErr aErr bErr |> Error
| Error aErr, _ -> Error aErr
| _, Error bErr -> Error bErr
let lift2ResultFromMap2 f= // ('a -> 'b -> 'c) -> (Result<'a,'d list> -> Result<'b,'d list> -> Result<'c,'d list>)
map2 f List.append
Here I expected that the return type of map2 is Result<'a0,'e> instead of Result<'a,'e>.
But then when I use it in defining lift2ResultFromMap2 the return type is exactly what I expect, Result<'c,'d list> instead of Result<'a,'d list> that map2 would suggest.
Am I right to think this is an IDE bug? or is there some additional wildcard like meaning to the numbered suffix?
Your constraints are respected first.
Now for your example, it tried to pick 'a for the first unconstrained value, which is the return type of fOk, saw 'a was already in use, so it went with 'a0. So, if you let it pick the constraints with:
(a : Result<_,'e>) (b : Result<_,'e>)
fOk will be inferred to be 'a -> 'b -> 'c. If you have enough values to infer up to 'e, you'll end up seeing an 'e0.

Get name of non-static member in F#

In C# you can get the name of a method by using
nameof(ISomeClass.SomeMethod)
Is this doable in F#? When trying to dot into ISomeClass to get the SomeMethod, it merely says "SomeMethod is not a static method"
You can create a method based around F# quotations that retrieve an interface method in a type-safe manner.
open FSharp.Quotations
open FSharp.Quotations.Patterns
let getMethodName (e: Expr<'T -> 'U>) =
match e with
| Lambda (_, Call (_, mi, _)) -> mi.Name
| _ -> failwith "%A is not a valid getMethodName expression, expected Lamba(_ Call(_, _, _))"
type ISomeInterface =
interface
abstract SomeMethod: unit -> unit
end
[<EntryPoint>]
let main argv =
let name = <# fun (i : ISomeInterface) -> i.SomeMethod () #> |> getMethodName
printfn "%s" name
0

type mismatch error for async chained operations

Previously had a very compact and comprehensive answer for my question.
I had it working for my custom type but now due to some reason I had to change it to string type which is now causing type mismatch errors.
module AsyncResult =
let bind (binder : 'a -> Async<Result<'b, 'c>>) (asyncFun : Async<Result<'a, 'c>>) : Async<Result<'b, 'c>> =
async {
let! result = asyncFun
match result with
| Error e -> return Error e
| Ok x -> return! binder x
}
let compose (f : 'a -> Async<Result<'b, 'e>>) (g : 'b -> Async<Result<'c, 'e>>) = fun x -> bind g (f x)
let (>>=) a f = bind f a
let (>=>) f g = compose f g
Railway Oriented functions
let create (json: string) : Async<Result<string, Error>> =
let url = "http://api.example.com"
let request = WebRequest.CreateHttp(Uri url)
request.Method <- "GET"
async {
try
// http call
return Ok "result"
with :? WebException as e ->
return Error {Code = 500; Message = "Internal Server Error"}
}
test
type mismatch error for the AsyncResult.bind line
let chain = create
>> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
match chain "initial data" |> Async.RunSynchronously with
| Ok data -> Assert.IsTrue(true)
| Error error -> Assert.IsTrue(false)
Error details:
EntityTests.fs(101, 25): [FS0001] Type mismatch. Expecting a '(string -> string -> Async<Result<string,Error>>) -> 'a' but given a 'Async<Result<'b,'c>> -> Async<Result<'d,'c>>' The type 'string -> string -> Async<Result<string,Error>>' does not match the type 'Async<Result<'a,'b>>'.
EntityTests.fs(101, 25): [FS0001] Type mismatch. Expecting a '(string -> string -> Async<Result<string,Error>>) -> 'a' but given a 'Async<Result<string,'b>> -> Async<Result<string,'b>>' The type 'string -> string -> Async<Result<string,Error>>' does not match the type 'Async<Result<string,'a>>'.
Edit
Curried or partial application
In context of above example, is it the problem with curried functions? for instance if create function has this signature.
let create (token: string) (json: string) : Async<Result<string, Error>> =
and then later build chain with curried function
let chain = create "token" >> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
Edit 2
Is there a problem with following case?
signature
let create (token: Token) (entityName: string) (entityType: string) (publicationId: string) : Async<Result<string, Error>> =
test
let chain = create token >> AsyncResult.bind ( fun (result: string) -> async {return Ok "more results"} )
match chain "test" "article" "pubid" |> Async.RunSynchronously with
Update: At the front of the answer, even, since your edit 2 changes everything.
In your edit 2, you have finally revealed your actual code, and your problem is very simple: you're misunderstanding how the types work in a curried F# function.
When your create function looked like let create (json: string) = ..., it was a function of one parameter. It took a string, and returned a result type (in this case, Async<Result<string, Error>>). So the function signature was string -> Async<Result<string, Error>>.
But the create function you've just shown us is a different type entirely. It takes four parameters (one Token and three strings), not one. That means its signature is:
Token -> string -> string -> string -> Async<Result<string, Error>>
Remember how currying works: any function of multiple parameters can be thought of as a series of functions of one parameter, which return the "next" function in that chain. E.g., let add3 a b c = a + b + c is of type int -> int -> int -> int; this means that add3 1 returns a function that's equivalent to let add2 b c = 1 + b + c. And so on.
Now, keeping currying in mind, look at your function type. When you pass a single Token value to it as you do in your example (where it's called as create token, you get a function of type:
string -> string -> string -> Async<Result<string, Error>>
This is a function that takes a string, which returns another function that takes a string, which returns a third function which takes a string and returns an Async<Result<whatever>>. Now compare that to the type of the binder parameter in your bind function:
(binder : 'a -> Async<Result<'b, 'c>>)
Here, 'a is string, so is 'b, and 'c is Error. So when the generic bind function is applied to your specific case, it's looking for a function of type string -> Async<Result<'b, 'c>>. But you're giving it a function of type string -> string -> string -> Async<Result<string, Error>>. Those two function types are not the same!
That's the fundamental cause of your type error. You're trying to apply a function that returns a function that returns function that returns a result of type X to a design pattern (the bind design pattern) that expects a function that returns a result of type X. What you need is the design pattern called apply. I have to leave quite soon so I don't have time to write you an explanation of how to use apply, but fortunately Scott Wlaschin has already written a good one. It covers a lot, not just "apply", but you'll find the details about apply in there as well. And that's the cause of your problem: you used bind when you needed to use apply.
Original answer follows:
I don't yet know for a fact what's causing your problem, but I have a suspicion. But first, I want to comment that the parameter names for your AsyncResult.bind are wrong. Here's what you wrote:
let bind (binder : 'a -> Async<Result<'b, 'c>>)
(asyncFun : Async<Result<'a, 'c>>) : Async<Result<'b, 'c>> =
(I moved the second parameter in line with the first parameter so it wouldn't scroll on Stack Overflow's smallish column size, but that would compile correctly if the types were right: since the two parameters are lined up vertically, F# would know that they are both belonging to the same "parent", in this case a function.)
Look at your second parameter. You've named it asyncFun, but there's no arrow in its type description. That's not a function, it's a value. A function would look like something -> somethingElse. You should name it something like asyncValue, not asyncFun. By naming it asyncFun, you're setting yourself up for confusion later.
Now for the answer to the question you asked. I think your problem is this line, where you've fallen afoul of the F# "offside rule":
let chain = create
>> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
Note the position of the >> operator, which is to the left of its first operand. Yes, the F# syntax appears to allow that in most situations, but I suspect that if you simply change that function definition to the following, your code will work:
let chain =
create
>> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
Or, better yet because it's good style to make the |> (and >>) operators line up with their first operand:
let chain =
create
>> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
If you look carefully at the rules that Scott Wlaschin lays out in https://fsharpforfunandprofit.com/posts/fsharp-syntax/, you'll note that his examples where he shows exceptions to the "offside rule", he writes them like this:
let f g h = g // defines a new line at col 15
>> h // ">>" allowed to be outside the line
Note how the >> character is still to the right of the = in the function definition. I don't know exactly what the F# spec says about the combination of function definitions and the offside rule (Scott Wlaschin is great, but he's not the spec so he could be wrong, and I don't have time to look up the spec right now), but I've seen it do funny things that I didn't quite expect when I wrote functions with part of the function definition on the same line as the function, and the rest on the next line.
E.g., I once wrote something like this, which didn't work:
let f a = if a = 0 then
printfn "Zero"
else
printfn "Non-zero"
But then I changed it to this, which did work:
let f a =
if a = 0 then
printfn "Zero"
else
printfn "Non-zero"
I notice that in Snapshot's answer, he made your chain function be defined on a single line, and that worked for him. So I suspect that that's your problem.
Rule of thumb: If your function has anything after the = on the same line, make the function all on one line. If your function is going to be two lines, put nothing after the =. E.g.:
let f a b = a + b // This is fine
let g c d =
c * d // This is also fine
let h x y = x
+ y // This is asking for trouble
I would suspect that the error stems from a minor change in indentation since adding a single space to an FSharp program changes its meaning, the FSharp compiler than quickly reports phantom errors because it interprets the input differently. I just pasted it in and added bogus classes and removed some spaces and now it is working just fine.
module AsyncResult =
[<StructuralEquality; StructuralComparison>]
type Result<'T,'TError> =
| Ok of ResultValue:'T
| Error of ErrorValue:'TError
let bind (binder : 'a -> Async<Result<'b, 'c>>) (asyncFun : Async<Result<'a, 'c>>) : Async<Result<'b, 'c>> =
async {
let! result = asyncFun
match result with
| Error e -> return Error e
| Ok x -> return! binder x
}
let compose (f : 'a -> Async<Result<'b, 'e>>) (g : 'b -> Async<Result<'c, 'e>>) = fun x -> bind g (f x)
let (>>=) a f = bind f a
let (>=>) f g = compose f g
open AsyncResult
open System.Net
type Assert =
static member IsTrue (conditional:bool) = System.Diagnostics.Debug.Assert(conditional)
type Error = {Code:int; Message:string}
[<EntryPoint>]
let main args =
let create (json: string) : Async<Result<string, Error>> =
let url = "http://api.example.com"
let request = WebRequest.CreateHttp(Uri url)
request.Method <- "GET"
async {
try
// http call
return Ok "result"
with :? WebException as e ->
return Error {Code = 500; Message = "Internal Server Error"}
}
let chain = create >> AsyncResult.bind (fun (result: string) -> (async {return Ok "more results"}))
match chain "initial data" |> Async.RunSynchronously with
| Ok data -> Assert.IsTrue(true)
| Error error -> Assert.IsTrue(false)
0

fsunit.xunit test exception in constructor

Having
type Category(name : string, categoryType : CategoryType) =
do
if (name.Length = 0) then
invalidArg "name" "name is empty"
i'm trying to test this exception using FsUnit + xUnit:
[<Fact>]
let ``name should not be empty``() =
(fun () -> Category(String.Empty, CategoryType.Terminal)) |> should throw typeof<ArgumentException>
but when it runs I see XUnit.MatchException.
What i'm doing wrong?
Test source code
Category type source code
While I'm not an FsUnit expert, I think the MatchException type is expected, because FsUnit uses custom matchers, and the match doesn't succeed.
However, the test, as written, seems to be incorrect, because
(fun () -> Category(String.Empty, CategoryType.Terminal)
is a function with the signature unit -> Category, but you don't really care about the returned Category.
Instead, you can write it as
[<Fact>]
let ``name should not be empty``() =
(fun () -> Category(String.Empty, CategoryType.Terminal) |> ignore)
|> should throw typeof<ArgumentException>
Notice the added ignore keyword, which ignores the Category return value. This test passes, and fails if you remove the Guard Clause.

Resources