I have a dataset with 10 million rows. Each row has different feature- say feature1..feature10 Each feature can be represented by double value for each row. I need to partition this dataset into n clusters, ideally n should be less than 10. I want all the clusters to be as balanced as possible. I should be able to define during balancing what should be weight of each feature. For example: one way to say that is : Distribute the dataset into 3 clusters such as each feature is as balanced as possible. Other way can be : feature1 takes more weightage than feature2, and balancing should take care of weights.
I am complete newbie to the field and I believe that there is already readymade solution to solve problems like this. Please be as elaborate as possible.
Related
I created a k-means clustering for clustering data based on 1 multidimentional feature i.e. 24-hour power usage by customer for many customers, but I'd like to figure out a good way to take data which hypothetically comes from matches played within a game for a player and tries to predict the win probability.
It would be something like:
Player A
Match 1
Match 2
.
.
.
Match N
And each match would have stats of differing dimensions for that player such as the player's X/Y coordinates at a given time, time a score was made by the player, and such. Example, the X/Y would have data points based on the match length, while scores could be anywhere between 0 and X, while other values might only have 1 dimension such as difference in skill ranking for the match.
I want to take all of the matches of the player and cluster them based on the features.
My idea to approach this is to cluster each multi-dimensional feature of the matches to summarize them into a cluster, then represent that entire feature for the match with a cluster number.
I would repeat this process for all of the features which are multi-dimensional until the row for each match is a vector of scalar values and then run one last cluster on this summarized view to try to see if wins and losses end up in distinctive clusters, and based on the similarity of the current game being played with the clustered match data, calculate the similarity to other clusters and assign a probability on whether it is likely going to become a win or a loss.
This seems like a decent approach, but there are a few problems that make me want to see if there is a better way
One of the key issues I'm seeing is that building model seems very slow - I'd want to run PCA and calculate the best number of components to use for each feature for each player, and also run a separate calculation to determine the best number of clusters to assign for each feature/player when I am clustering those individual features. I think hypothetically scaling this out over thousands to millions of players with trillions of matches would take an extremely long time to do this computation as well as update the model with new data, features, and/or players.
So my question to all of you ML engineers/data scientists is how is my approach to this problem?
Would you use the same method and just allocate a ton of hardware to build the model quickly, or is there some better/more efficient method which I've missed in order to cluster this type of data?
It is a completely random approach.
Just calling a bunch of functions just because you've used them once and they sound cool never was a good idea.
Instead , you first should formalize your problem. What are you trying to do?
You appear to want to predict wins vs. losses. That is classification not clustering. Secondly, k-means minimizes the sum-of-squares. Does it actually !ake sense to minimize this on your data? I doubt so. Last, you begin to be concerned about scaling something to huge data, which does not even work yet...
Lets say I have 100 independent features - 90 are binary (e.g. 0/1) and 10 are continuous variables (e.g. age, height, weight, etc). I use the 100 features to predict a classifier problem with an adequate amount of samples.
When I set a XGBClassifier function and fit it, then the 10 most important features from the standpoint of gain are always the 10 continuous variable. For now I am not interested in cover or frequency. The 10 continuous variables take up like .8 to .9 of space in gain list ( sum(gain) = 1).
I tried tuning the gamma, reg_alpha , reg_lambda , max_depth, colsample. Still top 10 features by gain are always the 10 continuous features.
Any suggestions?
small update -- someone asked why I think this is happening. I believe it's because a continuous variable can be split on multiple times per decision tree. A binary variable can only be split on once. Hence, the higher prevalence of continuous variables in trees and thus a higher gain score
Yes, it's well-known that a tree(/forest) algorithm (xgboost/rpart/etc.) will generally 'prefer' continuous variables over binary categorical ones in its variable selection, since it can choose the continuous split-point wherever it wants to maximize the information gain (and can freely choose different split-points for that same variable at other nodes, or in other trees). If that's the optimal tree (for those particular variables), well then it's the optimal tree. See Why do Decision Trees/rpart prefer to choose continuous over categorical variables? on sister site CrossValidated.
When you say "any suggestions", depends what exactly do you want, it could be one of the following:
a) To find which of the other 90 binary categorical features give the most information gain
b) To train a suboptimal tree just to find out which features those are
c) To engineer some "compound" features by combining the binary features into n-bit categorical features which have more information gain (while being sure to remove the individual binary features from the input)
d) You could look into association rules : What is the practical difference between association rules and decision trees in data mining?
If you want to explore a)...c), suggest something vaguely like this:
exclude various subsets of the 10 continuous variables, then see which binary features show up as having the most gain. Let's say that gives you N candidate features. N will be << 90, let's assume N < 20 to make the following more computationally efficient.
then compute the pairwise measure of association or correlation (Spearman or Kendall) between each of the N features. Look at a corrplot. Pick the clusters of variables which are most associated with each other. Create compound n-bit variables which combine those individual binary features. Then retrain the tree, including the compound variables, and excluding the individual binary variables (to avoid changing the total variance in the input).
iterate for excluding various subsets of the 10 continuous variables. See which patterns emerge in your compound variables. I'm sure there's an algorithm for doing this (compound feature-engineering of n-bit categoricals) more formally and methodically, I just don't know it.
Anyway, for hacking a tree-based method for better performance, I imagine the most naive way is "at every step, pick the two most highly-correlated/associated categorical features and combine them". Then retrain the tree (include new feature, exclude its constituent features) and use the revised gain numbers.
perhaps a more robust way might be:
Pick some threshold T for correlation/association, say start at a high level T = 0.9 or 0.95
At each step, merge any features whose absolute correlation/association to each other >= T
If there were no merges at this step, reduce T by some value (like T -= 0.05) or ratio (e.g. T *= 0.9 . If still no merges, keep reducing T until there are merges, or until you hit some termination value (e.g. T = 0.03)
Retrain the tree including the compound variables, excluding their constituent subvariables.
Now go back and retrain what should be an improved tree with all 10 continuous variables, and your compound categorical features.
Or you could early-terminate the compound feature selection to see what the full retrained tree looks like.
This issue arose in the 2014 Kaggle Allstate Purchase Prediction Challenge, where the policy coverage options A,B,C,D,E,F,G were each categoricals with between 2-4 values, and very highly correlated with each other. (The current option of C, "C_previous", is one of the input features). See that competitions's forums and published solutions for more. Be aware that policy = (A,B,C,D,E,F,G) is the output. But C_previous is an input variable.
Some general fast-and-dirty rules-of-thumb on feature selection from Kaggle are:
throw out any near-constant/ very-low-variance variables (because they have near-zero information content)
throw out any very-high-cardinality categorical variables (cardinality >~ training-set-size/2), (because they will also tend to have low information content, but cause lots of spurious overfitting and blow up training time). This can include customer IDs, row IDs, transaction IDs, sequence IDs, and other variables which shouldn't be trained on in the first place but accidentally ended up in the training set.
I can suggest few things for you to try.
Test your model without this data (only 90 features) and evaluate the decrease in your score. If it's insignificant you might want to remove those features.
Turn them into groups.
For example, age can be categorized into groups, 0 : 0-7, 1 : 8-16, 2 : 17-25 and so on.
Turn them into binary. Out of the box idea on how to chose the best value to split them into binary is: Build 1 tree with 1 node (max depth = 1) and use only 1 feature. (1 out of the continuous features). then, dump the model to a .txt file and see the value it chose to split on. using this value, you can transform all that feature column into binary
I'm dealing myself with very similar problems right now, So i'll be happy to hear your results and the paths you chose to try.
I learned a lot from the answer by #smci, so I would recommend to follow his suggestions.
In the case, when your binary categorical features are in fact OHE representations of several categorical features with several classes in each, you can follow two more approaches:
Convert OHE into label encoding. Yes, this has the caveat that one introduces an order into a categorical features, which might be meaningless, for example green=3 > red=2 > blue=1. But in practice is seems that trees handle label=encoded categorical variables (even with meaningless order) reasonably well.
Convert OHE into target-/mean-/likelihood encoding. This is tricky, because you need to apply regularisation to avoid data leakage.
Both of those ideas are meant to group together several binary features into a single one based on prior knowledge about feature meaning. If you do not have that luxury, you can also try to deduce such groups by doing scalar product of columns and finding those giving zero product.
I am running a k-means algorithm in R and trying to find the optimal number of clusters, k. Using the the silhouette method, the gap statistic, and the elbow method, I determined that the optimal number of clusters is 2. While there are no predefined clusters for the business, I am concerned that k=2 is not too insightful, which leads me to a few questions.
1) What does an optimal k = 2 mean in terms of the data's natural clustering? Does this suggest that maybe there are no clear clusters or that no clusters are better than any clusters?
2) At k = 2, the R-squared is low (.1). At k = 5, the R-squared is much better (.32). What are the exact trade offs on selecting k = 5 knowing it's not optimal? Would it be that you can increase the clusters, but they may not be distinct enough?
3) My n=1000, I have 100 variables to choose from, but only selected 5 from domain knowledge. Would increasing the number of variables necessarily make the clustering better?
4) As a follow up to question 3, if a variable is introduced and lowers the R-squared, what does that say about the variable?
I am no expert but I will try to answer as best as I can:
1) Your optimal cluster number methods gave you k=2 so that would suggest there is clear clustering the number is just low (2). To help with this try using your knowledge of the domain to help with the interpretation, does 2 clusters make sense given your domain?
2) Yes you're correct. The optimal solution in terms of R-squared is to have as many clusters as data points, however this isn't optimal in terms of why you're doing k-means. You're doing k-means to gain more insightful information from the data, this is you're primary goal. As such if you choose k=5 you're data will fit your 5 clusters better but as you say there probably isn't much distinction between them so you're not gaining any insight.
3) Not necessarily, in fact adding blindly could make it worse. K-means operates in euclidean space so every variable is given an even weighting in determining the clusters. If you add variables that are not relevant their values will still distort the n-d space making your clusters worse.
4) (Double check my logic here i'm not 100% on this one) If a variable is introduced to the same number of clusters and it drops the R-squared then yes it is a useful variable to add, it means it has correlation with your other variables.
I have a twitter-like(another micro blog) data set with 1.6 million datapoints and tried to predict the its retweet numbers based on its content. I extracted its keyword and use the keywords as the bag of words feature. Then I got 1.2 million dimension feature. The feature vector is very sparse,usually only ten dimension in one data point. And I use SVR to do the regression. Now it has taken 2 days. I think the training time might take quite a long time. I don't know if I do this task like this is normal. Is there any way or is it necessary to optimize this problem?
BTW. If in this case , I don't use any kernel and the machine is 32GB RAM and i-7 16 cores. How long the training time will be in estimation? I used the lib pyml.
You need to find a dimensionality reduction approach that works for your problem.
I've worked on a similar problem to yours and I found that Information Gain worked well, but there are others.
I found this paper (Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34, No.1, pp.1-47, 2002) to be a good theoretical treatment of text classification, including feature reduction by a variety of methods from the simple (Term Frequency) to the complex (Information-Theoretic).
These functions try to capture the intuition that the best terms for ci are the
ones distributed most differently in the sets of positive and negative examples of
ci. However, interpretations of this principle vary across different functions. For instance, in the experimental sciences χ2 is used to measure how the results of an observation differ (i.e., are independent) from the results expected according to an initial hypothesis (lower values indicate lower dependence). In DR we measure how independent tk and ci are. The terms tk with the lowest value for χ2(tk, ci) are thus the most independent from ci; since we are interested in the terms which are not, we select the terms for which χ2(tk, ci) is highest.
These techniques help you choose terms that are most useful in separating the training documents into the given classes; the terms with the highest predictive value for your problem.
I've been successful using Information Gain for feature reduction and found this paper (Entropy based feature selection for text categorization Largeron, Christine and Moulin, Christophe and Géry, Mathias - SAC - Pages 924-928 2011) to be a very good practical guide.
Here the authors present a simple formulation of entropy-based feature selection that's useful for implementation in code:
Given a term tj and a category ck, ECCD(tj , ck) can be
computed from a contingency table. Let A be the number
of documents in the category containing tj ; B, the number
of documents in the other categories containing tj ; C, the
number of documents of ck which do not contain tj and D,
the number of documents in the other categories which do
not contain tj (with N = A + B + C + D):
Using this contingency table, Information Gain can be estimated by:
This approach is easy to implement and provides very good Information-Theoretic feature reduction.
You needn't use a single technique either; you can combine them. Ter-Frequency is simple, but can also be effective. I've combined the Information Gain approach with Term Frequency to do feature selection successfully. You should experiment with your data to see which technique or techniques work most effectively.
At first you can simply remove all words with high frequency and all words with low frequency, because both of them don't tell you much about content of a text, then you have to do a word-stemming.
After that you can try to reduce dimensionality of your space, with Feature hashing, or some more advance dimensionality reduction trick (PCA, ICA), or even both of them.
I'm trying to evaluate what is the right number of cluster needed for clusterize some data.
I know that this is possible using Davies–Bouldin Index (DBI).
To using DBI you have to compute it for any number of cluster and the one that minimize the DBI corresponds to the right number of cluster needed.
The question is:
how to know if 2 clusters are better than 1 cluster using DBI? So, how can I compute DBI when I have just 1 cluster?
Only considering the average DBI of all clusters apparently is not a good idea.
Certainly, increasing the number of clusters - k, without penalty, will always reduce the amount of DBI in the resulting clustering, to the extreme case of zero DBI if each data point is considered its own cluster (because each data point overlaps with its own centroid).
how to know if 2 clusters are better than 1 cluster using DBI? So, how can I compute DBI when I have just 1 cluster?
So it's hard to say which one is better if you only use the average DBI as the performance metric.
A good practical method is to use the Elbow method.
Another method looks at the percentage of variance explained as a function of the number of clusters: You should choose a number of clusters so that adding another cluster doesn't give much better modeling of the data. More precisely, if you graph the percentage of variance explained by the clusters against the number of clusters, the first clusters will add much information (explain a lot of variance), but at some point the marginal gain will drop, giving an angle in the graph. The number of clusters are chosen at this point, hence the "elbow criterion".
Some other good alternatives with respective to choosing the optimal number of clusters:
Determining the number of clusters in a data set
How to define number of clusters in K-means clustering?