str.suffix in z3 API is unknown - z3

I'm trying to use suffix API function in Z3 in the following script,
but Z3 complains it does not know str.suffix. Since I see it in the API
here I guess it exists but only called different (?)
Thanks!
(declare-const s String)
(declare-const s00 String)
(declare-const s1 String)
(declare-const s2 String)
(declare-const i Int)
(assert (= s "X2a2##aDD\x00444ppa800"))
(assert (= s00 (str.substr s 0 (str.indexof s "\x00" 0))))
(assert (str.suffixof s1 s00))
(assert (str.suffixof s2 s1))
(assert (= (str.len s1) (+ (str.len s2) 1)))
(assert (or (and (str.contains s00 "a")
(str.contains s1 "a"))
(not (str.contains s00 "a"))))
(assert (not (str.contains s2 "a")))
(assert (= i (ite (not (str.contains s00 "a")) -1
(- (str.len s00) (str.len s1)))))
(check-sat)
(get-value (s s00 s1 s2 i))
EDIT:
The script was fixed according to the answer. Here is the output from z3:
sat
((s "X2a2##aDD\x00444ppa800")
(s00 "X2a2##aDD")
(s1 "aDD")
(s2 "DD")
(i 6))

The correct call is: str.suffixof
(PS. Your file still doesn't load even with that fix since it has other issues; but that's besides the point of this question.)

Related

Quantifier patterns in Z3

I am having trouble attempting to prove this fairly simple Z3 query.
(set-option :smt.auto-config false) ; disable automatic self configuration
(set-option :smt.mbqi false) ; disable model-based quantifier instantiation
(declare-fun sum (Int) Int)
(declare-fun list () (Array Int Int))
(declare-fun i0 () Int)
(declare-fun s0 () Int)
(declare-fun i1 () Int)
(declare-fun s1 () Int)
(assert (forall ((n Int))
(! (or (not (<= n 0)) (= (sum n) 0))
:pattern ((sum n)))))
(assert (forall ((n Int))
(! (let ((a1 (= (sum n)
(+ (select list (- n 1))
(sum (- n 1))))))
(or (<= n 0) a1))
:pattern ((sum n)))))
(assert (>= i0 0))
(assert (= s0 (sum i0)))
(assert (= i1 (+ 1 i0)))
(assert (= s1 (+ 1 s0 (select list i0))))
(assert (not (= s1 (sum i1))))
(check-sat)
Seems to me that the final assertion should instantiate the second quantified statement for i1 while the assert involving s0 should instantiate the quantifiers for i0. These two should should easily lead to UNSAT.
However, Z3 returns unknown. What am I missing?
Never mind, there was an silly error in my query.
This code:
(assert (= s1 (+ 1 s0 (select list i0))))
should have been:
(assert (= s1 (+ s0 (select list i0))))

Guiding z3's proof search

I'm trying to get z3 to work (most of the time) for very simple non-linear integer arithmetic problems. Unfortunately, I've hit a bit of a wall with exponentiation. I want to be able handle problems like x^{a+b+2} = (x * x * x^{a} * x{b}). I only need to handle non-negative exponents.
I tried redefining exponentiation as a recursive function (so that it's just allowed to return 1 for any non-positive exponent) and using a pattern to facilitate z3 inferring that x^{a+b} = x^{a} * x^{b}, but it doesn't seem to work - I'm still timing out.
(define-fun-rec pow ((x!1 Int) (x!2 Int)) Int
(if (<= x!2 0) 1 (* x!1 (pow x!1 (- x!2 1)))))
; split +
(assert (forall ((a Int) (b Int) (c Int))
(! (=>
(and (>= b 0) (>= c 0))
(= (pow a (+ b c)) (* (pow a c) (pow a b))))
:pattern ((pow a (+ b c))))))
; small cases
(assert (forall ((a Int)) (= 1 (pow a 0))))
(assert (forall ((a Int)) (= a (pow a 1))))
(assert (forall ((a Int)) (= (* a a) (pow a 2))))
(assert (forall ((a Int)) (= (* a a a) (pow a 3))))
; Our problem
(declare-const x Int)
(declare-const i Int)
(assert (>= i 0))
; This should be provably unsat, by splitting and the small case for 2
(assert (not (= (* (* x x) (pow x i)) (pow x (+ i 2)))))
(check-sat) ;times out
Am I using patterns incorrectly, is there a way to give stronger hints to the proof search, or an easier way to do achieve what I want?
Pattern (also called triggers) may only contain uninterpreted functions. Since + is an interpreted function, you essentially provide an invalid pattern, in which case virtually anything can happen.
As a first step, I disabled Z3's auto-configuration feature and also MBQI-based quantifier instantiation:
(set-option :auto_config false)
(set-option :smt.mbqi false)
Next, I introduced an uninterpreted plus function and replaced each application of + by plus. That sufficed to make your assertion verify (i.e. yield unsat). You can of course also axiomatise plus in terms of +, i.e.
(declare-fun plus (Int Int) Int)
(assert (forall ((a Int) (b Int))
(! (= (plus a b) (+ a b))
:pattern ((plus a b)))))
but your assertion already verifies without the definitional axioms for plus.

Is this a bug in z3 int.to.str?

I'm posting this z3 issue here too in case any z3 users have somehow encountered it. We are experimenting a little with the semantics of int.to.str, and we found this weird behavior that looks like a bug. Here is the first query that works OK:
(declare-const s String)
(declare-const i Int)
(assert (< i -2))
(assert (= s (int.to.str i)))
(assert (< 0 (str.len s )))
(check-sat)
(get-value (s i))
And the result:
sat
((s "-11")
(i (- 11)))
When I change the '<' sign to '=' I get an unsat response:
(declare-const s String)
(declare-const i Int)
(assert (= i -2))
(assert (= s (int.to.str i)))
(assert (< 0 (str.len s )))
(check-sat)
(get-value (s i))
Here is the result I get:
unsat
(error "line 10 column 16: model is not available")
Am I missing something here? Thanks!
This is indeed a bug, as described here.

z3 times out in case of a formula with quantifiers

I am getting timeout on the following example.
http://rise4fun.com/Z3/zbOcW
Is there any trick to make this work (eg.by reformulating the problem or using triggers)?
For this example, the macro finder will be useful (I think often with forall quantifiers with implications), you can enable it with:
(set-option :macro-finder true)
Here's your updated example that gets sat quickly (rise4fun link: http://rise4fun.com/Z3/Ux7gN ):
(set-option :macro-finder true)
(declare-const a (Array Int Bool))
(declare-const sz Int)
(declare-const n Int)
(declare-const d Int)
(declare-const r Bool)
(declare-const x Int)
(declare-const y Int)
;;ttff
(declare-fun ttff (Int Int Int) Bool)
(assert
(forall ((x1 Int) (y1 Int) (n1 Int))
(= (ttff x1 y1 n1)
(and
(forall ((i Int))
(=> (and (<= x1 i) (< i y1))
(= (select a i) true)))
(forall ((i Int))
(=> (and (<= y1 i) (< i n1))
(= (select a i) false)))))))
;; A1
(assert (and (<= 0 n) (<= n sz)))
;; A2
(assert (< 0 d))
;; A3
(assert (and (and (<= 0 x) (<= x y)) (<= y n)))
;; A4
(assert (ttff x y n))
;; A6
(assert
(=> (< 0 y)
(= (select a (- y 1)) true)))
;; A7
(assert
(=> (< 0 x)
(= (select a (- x 1)) false)))
;;G
(assert
(not
(iff
(and (<= (* 2 d) (+ n 1)) (ttff (- (+ n 1) (* 2 d)) (- (+ n 1) d) (+ n 1)))
(and (= (- (+ n 1) y) d) (<= d (- y x))))))
(check-sat)
(get-model)

Can options change `sat` into `unsat`?

Another question from a Z3 newbie. Can options change the behavior of Z3? I might expect them to affect termination, or change sat or unsat into unknown but not sat into unsat or vice versa.
This example:
(set-option :smt.macro-finder true)
(declare-datatypes () ((Option (none) (some (Data Int)))))
(define-sort Set () (Array Option Option))
(declare-fun filter1 (Option) Option)
(declare-fun filter2 (Option) Option)
(declare-var s1 Set)
(declare-var s2 Set)
(declare-var x1 Option)
(declare-var x2 Option)
(declare-var x3 Option)
(declare-var x4 Option)
(assert (not (= x1 none)))
(assert (not (= x2 none)))
(assert (not (= x3 none)))
(assert (not (= x4 none)))
(assert (= (select s1 x1) x2))
(assert (= (select s2 x3) x4))
(assert (forall ((x Option)) (= (filter1 x) (ite (or (= none x) (= (Data x) 1)) x none))))
(assert (forall ((x Option)) (= (filter2 x) (ite (or (= none x) (= (Data x) 2)) x none))))
(assert (= ((_ map filter1) s1) s2))
(assert (= ((_ map filter2) s1) s2))
(check-sat)
(get-model)
returns sat with the first line and unsat without it.
Is this a bug or am I missing something fundamental?
This is a bug. The two quantifiers are essentially providing "definitions" for filter1 and filter2.
The option smt.macro-finder is used to eliminate functions symbols by expanding these definitions. It is essentially performing "macro expansion". However, there is a bug in the macro expander. It does not expand the occurrences of filter1 and filter2 in the map constructs: (_ map filter1) and (_ map filter2).
This bug will be fixed.
In the meantime, we should not use the map construct and smt.macro-finder option simultaneously.

Resources