Lets say I have the following image where there is a folder image with a white label on it.
What I want is to detect the coordinates of end points of the folder and the white paper on it (both rectangles).
Using the coordinates, I want to know the exact place of the paper on the folder.
GIVEN :
The inner white paper rectangle is always going to be of the fixed size, so may be we can use this knowledge somewhere?
I am new to opencv and trying to find some guidance around how should I approach this problem?
Problem Statement : We cannot rely on color based solution since this is just an example and color of both the folder as well as the rectangular paper can change.
There can be other noisy papers too but one thing is given, The overall folder and the big rectangular paper would always be the biggest two rectangles at any given time.
I have tried opencv canny for edge detection and it looks like this image.
Now how can I find the coordinates of outer rectangle and inner rectangle.
For this image, there are three domain colors: (1) the background-yellow (2) the folder-blue (3) the paper-white. Use the color info may help, I analysis it in RGB and HSV like this:
As you can see(the second row, the third cell), the regions can be easily seperated in H(HSV) if you find the folder mask first.
We can choose
My steps:
(1) find the folder region mask in HSV using inRange(hsv, (80, 10, 20), (150, 255, 255))
(2) find contours on the mask and filter them by width and height
Here is the result:
Related:
Choosing the correct upper and lower HSV boundaries for color detection with`cv::inRange` (OpenCV)
How to define a threshold value to detect only green colour objects in an image :Opencv
You can opt for (Adaptive Threshold)[https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html]
Obtain the hue channel of the image.
Perform adaptive threshold with a certain block size. I used size of 15 for half the size of the image.
This is invariant to color as you expected. Now you can go ahead and extract what you need!!
This solution helps to identify the white paper region of the image.
This is the full code for the solution:
import cv2
import numpy as np
image = cv2.imread('stack2.jpg',-1)
paper = cv2.resize(image,(500,500))
ret, thresh_gray = cv2.threshold(cv2.cvtColor(paper, cv2.COLOR_BGR2GRAY),
200, 255, cv2.THRESH_BINARY)
image, contours, hier = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for c in contours:
area = cv2.contourArea(c)
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
# convert all coordinates floating point values to int
box = np.int0(box)
# draw a green 'nghien' rectangle
if area>500:
cv2.drawContours(paper, [box], 0, (0, 255, 0),1)
print([box])
cv2.imshow('paper', paper)
cv2.imwrite('paper.jpg',paper)
cv2.waitKey(0)
First using a manual threshold(200) you can detect paper in the image.
ret, thresh_gray = cv2.threshold(cv2.cvtColor(paper, cv2.COLOR_BGR2GRAY), 200, 255, cv2.THRESH_BINARY)
After that you should find contours and get the minAreaRect(). Then you should get coordinates for that rectangle(box) and draw it.
rect = cv2.minAreaRect(c)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(paper, [box], 0, (0, 255, 0),1)
In order to avoid small white regions of the image you can use area = cv2.contourArea(c) and check if area>500 and drawContours().
final output:
Console output gives coordinates for the white paper.
console output:
[array([[438, 267],
[199, 256],
[209, 60],
[447, 71]], dtype=int64)]
Related
I am trying to define the coordinates of multiple rectangles appearing randomly in the screen. The width of the rectangles is defined (even if with the contour method i noticed there is a bit of inaccuracy in determine it).
With my python code:
yellow = (5,242,206)
while True:
isFrameValid, frame = capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
roi = gray [0:300, 0:1920]
threshold, thresh_image = cv2.threshold(roi, 30, 255, cv2.THRESH_BINARY)
#Select contours
contours, _ =cv2.findContours(thresh_image,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(frame, contours, -1,yellow,1)
I can only detect the entire block, even trying with different options instead of RETR_EXTERNAL.Looking at my example images, what I'd like to achive is to detect the 3 rectangles (appearing in random position in the screen) so I can correctly determine their coordinates. Are there any ideas or methods I dont know about since im new with Opencv?
)
Example to reproduce the problem with an image
import cv2
img= cv2.imread('./IwOXW.png')
yellow = (5,242,206)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
roi = gray [0:300, 0:1920]
threshold, thresh_image = cv2.threshold(roi, 30, 255, cv2.THRESH_BINARY)
#Select contours
contours, _ = cv2.findContours(thresh_image,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1,yellow,1)
cv2.imshow('Frame',img)
cv2.waitKey(0)
with this image
The reason findCountours can't detect the entire block is because there is no line on the inside for it to detect.
I can think of two options for you to try:
Use the contours that you have, and write some smarts to find 90 degree bends, and thus build your rectangles
You could investigate using HoughLines to detect the lines. You would probably still have to write some code to take the detected lines and figure out what are rectangles, but it might be simpler with HoughLines as it will give you straight lines to work with. Look for HoughLines in the docs: https://docs.opencv.org/4.x/
I have an image to which I apply a bilateral filter, followed by adaptive thresholding to get the image below.
original image (this is a screenshot off the depth image of the object)
thresholded image
I would like to fit lines to the vertical parts/lines and find the center poiint, output like image below:
I cant seem to understand the output of the cv2.adaptiveThreshold(). How are the purple pixels (i.e my edges) represented? and how can a line be fitted? MWE:
import cv2
image = cv2.imread("depth_frame0009.jpg")
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
bilateral_filter = cv2.bilateralFilter(gray_image, 15, 50, 50)
plt.figure()
plt.imshow(bilateral_filter)
plt.title("bilateral filter")
#plt.imsave("2dimage_gaussianFilter.png",blurred)
plt.imsave("depthmap_image_bilateralFilter.png",bilateral_filter)
th3 = cv2.adaptiveThreshold(bilateral_filter,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
plt.figure()
plt.imshow(th3)
========
edit:
Canny edges
contours
They are represented as an image, a matrix of uint8.
The reason it is purple and yellow is because matplotlib is applying a colormap to it.
I generally prefer to use some specific parameters when plotting image processing output images, eg
plt.imshow(th3, cmap='gray', interpolation='nearest')
If you are specifically interested in finding and fitting lines you may want to use a different representation, such as Hough lines. Once you have the lines in the image you can take the best fit lines and find your center point between them.
I want to extract the screen of the mobile device from an image where mobile is not the largest rectangle. The mobile is placed on a table or mobile image is visible inside a laptop screen. So I am not able to use the largest contour detection algorithm.
If you can help please let me know.
Thanks in advance.
Here I am adding a sample picture:
Sample Image
There are different approaches that you can take:
Probably the most promising method will be to train a deep-learning model with your costume data. Take a look at this article.
You can add some other filters before searching for rectangles. For example, if your phone screen is turned off, you can use HSV color filter for black objects. I would be doing something like that:
blur = cv2.blur(img,(5,5))
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
# Play with these values. They are the HSV lower and upper bounds:
lower_black = np.array([0, 5, 50], np.uint8)
upper_black = np.array([179, 50, 255], np.uint8)
mask = cv2.inRange(hsv, lower_black, upper_black)
# mask = cv2.Canny(mask, 60, 120) - optional
img_res = cv2.bitwise_and(img, img, mask=mask)
(np refers to numpy).
Now try to perform contour detection on img_res. Notice that HSV lower and upper bounds values should be fine-tuned to give you the best results.
If the contour detection doesn't work well on the filtered image, try to apply Canny edge detection on mask, as commented in the code.
I am trying to identify a rectangle underwater in a noisy environment. I implemented Canny to find the edges, and drew the found edges using cv2.circle. From here, I am trying to identify the imperfect rectangle in the image (the black one below the long rectangle that covers the top of the frame)
I have attempted multiple solutions, including thresholds, blurs and resizing the image to detect the rectangle. Below is the barebones code with just drawing the identified edges.
import numpy as np
import cv2
import imutils
img_text = 'img5.png'
img = cv2.imread(img_text)
original = img.copy()
min_value = 50
max_value = 100
# draw image and return coordinates of drawn pixels
image = cv2.Canny(img, min_value, max_value)
indices = np.where(image != 0)
coordinates = zip(indices[1], indices[0])
for point in coordinates:
cv2.circle(original, point, 1, (0, 0, 255), -1)
cv2.imshow('original', original)
cv2.waitKey(0)
cv2.destroyAllWindows()
Where the output displays this:
output
From here I want to be able to separately detect just the rectangle and draw another rectangle on top of the output in green, but I haven't been able to find a way to detect the original rectangle on its own.
For your specific image, I obtained quite good results with a simple thresholding on the blue channel.
image = cv2.imread("test.png")
t, img = cv2.threshold(image[:,:,0], 80, 255, cv2.THRESH_BINARY)
In order to adapt the threshold, I propose a simple way of varying the threshold until you get one component. I have also implemented the rectangle drawing:
def find_square(image):
markers = 0
threshold = 10
while np.amax(markers) == 0:
threshold += 5
t, img = cv2.threshold(image[:,:,0], threshold, 255, cv2.THRESH_BINARY_INV)
_, markers = cv2.connectedComponents(img)
kernel = np.ones((5,5),np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
img = cv2.morphologyEx(img, cv2.MORPH_DILATE, kernel)
nonzero = cv2.findNonZero(img)
x, y, w, h = cv2.boundingRect(nonzero)
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imshow("image", image)
And the results on the provided example images:
The idea behind this approach is based on the observation that the most information is in the blue channel. If you separate the images in the channels, you will see that in the blue channel, the dark square has the best contrast. It is also the darkest region on this channel, which is why thresholding works. The problem remains the threshold setting. Based on the above intuition, we are looking for the lowest threshold that will bring up something (and hope that it will be the square). What I did is to simply increase gradually the threshold until something appears.
Then, I applied some morphology operations to eliminate other small points that may appear after thresholding and to make the square look a bit bigger (the edges of the square are lighter, and therefore not the entire square is captured). Then is was a matter of drawing the rectangle.
The code can be made much nicer (and more efficient) by doing some statistical analysis on the histogram. Simply compute the threshold such that 5% (or some percent) of the pixels are darker. You may require do so a connected component analysis to keep the biggest blob.
Also, my usage of connectedComponents is very poor and inefficient. Again, code written in a hurry to prove the concept.
I'm trying to use OpenCV to "parse" screenshots from the iPhone game Blocked. The screenshots are cropped to look like this:
I suppose for right now I'm just trying to find the coordinates of each of the 4 points that make up each rectangle. I did see the sample file squares.c that comes with OpenCV, but when I run that algorithm on this picture, it comes up with 72 rectangles, including the rectangular areas of whitespace that I obviously don't want to count as one of my rectangles. What is a better way to approach this? I tried doing some Google research, but for all of the search results, there is very little relevant usable information.
The similar issue has already been discussed:
How to recognize rectangles in this image?
As for your data, rectangles you are trying to find are the only black objects. So you can try to do a threshold binarization: black pixels are those ones which have ALL three RGB values less than 40 (I've found it empirically). This simple operation makes your picture look like this:
After that you could apply Hough transform to find lines (discussed in the topic I referred to), or you can do it easier. Compute integral projections of the black pixels to X and Y axes. (The projection to X is a vector of x_i - numbers of black pixels such that it has the first coordinate equal to x_i). So, you get possible x and y values as the peaks of the projections. Then look through all the possible segments restricted by the found x and y (if there are a lot of black pixels between (x_i, y_j) and (x_i, y_k), there probably is a line probably). Finally, compose line segments to rectangles!
Here's a complete Python solution. The main idea is:
Apply pyramid mean shift filtering to help threshold accuracy
Otsu's threshold to get a binary image
Find contours and filter using contour approximation
Here's a visualization of each detected rectangle contour
Results
import cv2
image = cv2.imread('1.png')
blur = cv2.pyrMeanShiftFiltering(image, 11, 21)
gray = cv2.cvtColor(blur, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if len(approx) == 4:
x,y,w,h = cv2.boundingRect(approx)
cv2.rectangle(image,(x,y),(x+w,y+h),(36,255,12),2)
cv2.imshow('thresh', thresh)
cv2.imshow('image', image)
cv2.waitKey()
I wound up just building on my original method and doing as Robert suggested in his comment on my question. After I get my list of rectangles, I then run through and calculate the average color over each rectangle. I check to see if the red, green, and blue components of the average color are each within 10% of the gray and blue rectangle colors, and if they are I save the rectangle, if they aren't I discard it. This process gives me something like this:
From this, it's trivial to get the information I need (orientation, starting point, and length of each rectangle, considering the game window as a 6x6 grid).
The blocks look like bitmaps - why don't you use simple template matching with different templates for each block size/color/orientation?
Since your problem is the small rectangles I would start by removing them.
Since those lines are much thinner than the borders of the rectangles I would start by applying morphological operations on the image.
Using a structural element that looks like this:
element = [ 1 1
1 1 ]
should remove lines that are less than two pixels wide. After the small lines are removed the rectangle finding algorithm of OpenCV will most likely do the rest of the job for you.
The erosion can be done in OpenCV by the function cvErode
Try one of the many corner detectors like harris corner detector. also it is in general a good idea to try that at multiple resolutions : so do some preprocessing of of varying magnification.
It appears that you want some sort of color dominated square then you can suppress the other colors, by first using something like cvsplit .....and then thresholding the color...so only that region remains....follow that with a cropping operation ...I think that could work as well ....