I'm trying to build a simple regression model using keras and tensorflow. In my problem I have data in the form (x, y), where x and y are simply numbers. I'd like to build a keras model in order to predict y using x as an input.
Since I think images better explains thing, these are my data:
We may discuss if they are good or not, but in my problem I cannot really cheat them.
My keras model is the following (data are splitted 30% test (X_test, y_test) and 70% training (X_train, y_train)):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, input_shape=() activation="relu", name="first_layer"))
model.add(tf.keras.layers.Dense(16, activation="relu", name="second_layer"))
model.add(tf.keras.layers.Dense(1, name="output_layer"))
model.compile(loss = "mean_squared_error", optimizer = "adam", metrics=["mse"] )
history = model.fit(X_train, y_train, epochs=500, batch_size=1, verbose=0, shuffle=False)
eval_result = model.evaluate(X_test, y_test)
print("\n\nTest loss:", eval_result, "\n")
predict_Y = model.predict(X)
note: X contains both X_test and X_train.
Plotting the prediction I get (blue squares are the prediction predict_Y)
I'm playing a lot with layers, activation funztions and other parameters. My goal is to find the best parameters to train the model, but the actual question, here, is slightly different: in fact I have hard times to force the model to overfit the data (as you can see from the above results).
Does anyone have some sort of idea about how to reproduce overfitting?
This is the outcome I would like to get:
(red dots are under blue squares!)
EDIT:
Here I provide you the data used in the example above: you can copy paste directly to a python interpreter:
X_train = [0.704619794270697, 0.6779457393024553, 0.8207082120250023, 0.8588819357831449, 0.8692320257603844, 0.6878750931810429, 0.9556331888763945, 0.77677964510883, 0.7211381534179618, 0.6438319113259414, 0.6478339581502052, 0.9710222750072649, 0.8952188423349681, 0.6303124926673513, 0.9640316662124185, 0.869691568491902, 0.8320164648420931, 0.8236399177660375, 0.8877334038470911, 0.8084042532069621, 0.8045680821762038]
y_train = [0.7766424210611557, 0.8210846773655833, 0.9996114311913593, 0.8041331063189883, 0.9980525368790883, 0.8164056182686034, 0.8925487603333683, 0.7758207470960685, 0.37345286573743475, 0.9325789202459493, 0.6060269037514895, 0.9319771743389491, 0.9990691225991941, 0.9320002808310418, 0.9992560731072977, 0.9980241561997089, 0.8882905258641204, 0.4678339275898943, 0.9312152374846061, 0.9542371205095945, 0.8885893668675711]
X_test = [0.9749191829308574, 0.8735366740730178, 0.8882783211709133, 0.8022891400991644, 0.8650601322313454, 0.8697902997857514, 1.0, 0.8165876695985228, 0.8923841531760973]
y_test = [0.975653685270635, 0.9096752789481569, 0.6653736469114154, 0.46367666660348744, 0.9991817903431941, 1.0, 0.9111205717076893, 0.5264993912088891, 0.9989199241685126]
X = [0.704619794270697, 0.77677964510883, 0.7211381534179618, 0.6478339581502052, 0.6779457393024553, 0.8588819357831449, 0.8045680821762038, 0.8320164648420931, 0.8650601322313454, 0.8697902997857514, 0.8236399177660375, 0.6878750931810429, 0.8923841531760973, 0.8692320257603844, 0.8877334038470911, 0.8735366740730178, 0.8207082120250023, 0.8022891400991644, 0.6303124926673513, 0.8084042532069621, 0.869691568491902, 0.9710222750072649, 0.9556331888763945, 0.8882783211709133, 0.8165876695985228, 0.6438319113259414, 0.8952188423349681, 0.9749191829308574, 1.0, 0.9640316662124185]
Y = [0.7766424210611557, 0.7758207470960685, 0.37345286573743475, 0.6060269037514895, 0.8210846773655833, 0.8041331063189883, 0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0, 0.4678339275898943, 0.8164056182686034, 0.9989199241685126, 0.9980525368790883, 0.9312152374846061, 0.9096752789481569, 0.9996114311913593, 0.46367666660348744, 0.9320002808310418, 0.9542371205095945, 0.9980241561997089, 0.9319771743389491, 0.8925487603333683, 0.6653736469114154, 0.5264993912088891, 0.9325789202459493, 0.9990691225991941, 0.975653685270635, 0.9111205717076893, 0.9992560731072977]
Where X contains the list of the x values and Y the corresponding y value. (X_test, y_test) and (X_train, y_train) are two (non overlapping) subset of (X, Y).
To predict and show the model results I simply use matplotlib (imported as plt):
predict_Y = model.predict(X)
plt.plot(X, Y, "ro", X, predict_Y, "bs")
plt.show()
Overfitted models are rarely useful in real life. It appears to me that OP is well aware of that but wants to see if NNs are indeed capable of fitting (bounded) arbitrary functions or not. On one hand, the input-output data in the example seems to obey no discernible pattern. On the other hand, both input and output are scalars in [0, 1] and there are only 21 data points in the training set.
Based on my experiments and results, we can indeed overfit as requested. See the image below.
Numerical results:
x y_true y_pred error
0 0.704620 0.776642 0.773753 -0.002889
1 0.677946 0.821085 0.819597 -0.001488
2 0.820708 0.999611 0.999813 0.000202
3 0.858882 0.804133 0.805160 0.001026
4 0.869232 0.998053 0.997862 -0.000190
5 0.687875 0.816406 0.814692 -0.001714
6 0.955633 0.892549 0.893117 0.000569
7 0.776780 0.775821 0.779289 0.003469
8 0.721138 0.373453 0.374007 0.000554
9 0.643832 0.932579 0.912565 -0.020014
10 0.647834 0.606027 0.607253 0.001226
11 0.971022 0.931977 0.931549 -0.000428
12 0.895219 0.999069 0.999051 -0.000018
13 0.630312 0.932000 0.930252 -0.001748
14 0.964032 0.999256 0.999204 -0.000052
15 0.869692 0.998024 0.997859 -0.000165
16 0.832016 0.888291 0.887883 -0.000407
17 0.823640 0.467834 0.460728 -0.007106
18 0.887733 0.931215 0.932790 0.001575
19 0.808404 0.954237 0.960282 0.006045
20 0.804568 0.888589 0.906829 0.018240
{'me': -0.00015776709314323828,
'mae': 0.00329163070145315,
'mse': 4.0713782563067185e-05,
'rmse': 0.006380735268216915}
OP's code seems good to me. My changes were minor:
Use deeper networks. It may not actually be necessary to use a depth of 30 layers but since we just want to overfit, I didn't experiment too much with what's the minimum depth needed.
Each Dense layer has 50 units. Again, this may be overkill.
Added batch normalization layer every 5th dense layer.
Decreased learning rate by half.
Ran optimization for longer using the all 21 training examples in a batch.
Used MAE as objective function. MSE is good but since we want to overfit, I want to penalize small errors the same way as large errors.
Random numbers are more important here because data appears to be arbitrary. Though, you should get similar results if you change random number seed and let the optimizer run long enough. In some cases, optimization does get stuck in a local minima and it would not produce overfitting (as requested by OP).
The code is below.
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Set seed just to have reproducible results
np.random.seed(84)
tf.random.set_seed(84)
# Load data from the post
# https://stackoverflow.com/questions/61252785/how-to-overfit-data-with-keras
X_train = np.array([0.704619794270697, 0.6779457393024553, 0.8207082120250023,
0.8588819357831449, 0.8692320257603844, 0.6878750931810429,
0.9556331888763945, 0.77677964510883, 0.7211381534179618,
0.6438319113259414, 0.6478339581502052, 0.9710222750072649,
0.8952188423349681, 0.6303124926673513, 0.9640316662124185,
0.869691568491902, 0.8320164648420931, 0.8236399177660375,
0.8877334038470911, 0.8084042532069621,
0.8045680821762038])
Y_train = np.array([0.7766424210611557, 0.8210846773655833, 0.9996114311913593,
0.8041331063189883, 0.9980525368790883, 0.8164056182686034,
0.8925487603333683, 0.7758207470960685,
0.37345286573743475, 0.9325789202459493,
0.6060269037514895, 0.9319771743389491, 0.9990691225991941,
0.9320002808310418, 0.9992560731072977, 0.9980241561997089,
0.8882905258641204, 0.4678339275898943, 0.9312152374846061,
0.9542371205095945, 0.8885893668675711])
X_test = np.array([0.9749191829308574, 0.8735366740730178, 0.8882783211709133,
0.8022891400991644, 0.8650601322313454, 0.8697902997857514,
1.0, 0.8165876695985228, 0.8923841531760973])
Y_test = np.array([0.975653685270635, 0.9096752789481569, 0.6653736469114154,
0.46367666660348744, 0.9991817903431941, 1.0,
0.9111205717076893, 0.5264993912088891, 0.9989199241685126])
X = np.array([0.704619794270697, 0.77677964510883, 0.7211381534179618,
0.6478339581502052, 0.6779457393024553, 0.8588819357831449,
0.8045680821762038, 0.8320164648420931, 0.8650601322313454,
0.8697902997857514, 0.8236399177660375, 0.6878750931810429,
0.8923841531760973, 0.8692320257603844, 0.8877334038470911,
0.8735366740730178, 0.8207082120250023, 0.8022891400991644,
0.6303124926673513, 0.8084042532069621, 0.869691568491902,
0.9710222750072649, 0.9556331888763945, 0.8882783211709133,
0.8165876695985228, 0.6438319113259414, 0.8952188423349681,
0.9749191829308574, 1.0, 0.9640316662124185])
Y = np.array([0.7766424210611557, 0.7758207470960685, 0.37345286573743475,
0.6060269037514895, 0.8210846773655833, 0.8041331063189883,
0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0,
0.4678339275898943, 0.8164056182686034, 0.9989199241685126,
0.9980525368790883, 0.9312152374846061, 0.9096752789481569,
0.9996114311913593, 0.46367666660348744, 0.9320002808310418,
0.9542371205095945, 0.9980241561997089, 0.9319771743389491,
0.8925487603333683, 0.6653736469114154, 0.5264993912088891,
0.9325789202459493, 0.9990691225991941, 0.975653685270635,
0.9111205717076893, 0.9992560731072977])
# Reshape all data to be of the shape (batch_size, 1)
X_train = X_train.reshape((-1, 1))
Y_train = Y_train.reshape((-1, 1))
X_test = X_test.reshape((-1, 1))
Y_test = Y_test.reshape((-1, 1))
X = X.reshape((-1, 1))
Y = Y.reshape((-1, 1))
# Is data scaled? NNs do well with bounded data.
assert np.all(X_train >= 0) and np.all(X_train <= 1)
assert np.all(Y_train >= 0) and np.all(Y_train <= 1)
assert np.all(X_test >= 0) and np.all(X_test <= 1)
assert np.all(Y_test >= 0) and np.all(Y_test <= 1)
assert np.all(X >= 0) and np.all(X <= 1)
assert np.all(Y >= 0) and np.all(Y <= 1)
# Build a model with variable number of hidden layers.
# We will use Keras functional API.
# https://www.perfectlyrandom.org/2019/06/24/a-guide-to-keras-functional-api/
n_dense_layers = 30 # increase this to get more complicated models
# Define the layers first.
input_tensor = Input(shape=(1,), name='input')
layers = []
for i in range(n_dense_layers):
layers += [Dense(units=50, activation='relu', name=f'dense_layer_{i}')]
if (i > 0) & (i % 5 == 0):
# avg over batches not features
layers += [BatchNormalization(axis=1)]
sigmoid_layer = Dense(units=1, activation='sigmoid', name='sigmoid_layer')
# Connect the layers using Keras Functional API
mid_layer = input_tensor
for dense_layer in layers:
mid_layer = dense_layer(mid_layer)
output_tensor = sigmoid_layer(mid_layer)
model = Model(inputs=[input_tensor], outputs=[output_tensor])
optimizer = Adam(learning_rate=0.0005)
model.compile(optimizer=optimizer, loss='mae', metrics=['mae'])
model.fit(x=[X_train], y=[Y_train], epochs=40000, batch_size=21)
# Predict on various datasets
Y_train_pred = model.predict(X_train)
# Create a dataframe to inspect results manually
train_df = pd.DataFrame({
'x': X_train.reshape((-1)),
'y_true': Y_train.reshape((-1)),
'y_pred': Y_train_pred.reshape((-1))
})
train_df['error'] = train_df['y_pred'] - train_df['y_true']
print(train_df)
# A dictionary to store all the errors in one place.
train_errors = {
'me': np.mean(train_df['error']),
'mae': np.mean(np.abs(train_df['error'])),
'mse': np.mean(np.square(train_df['error'])),
'rmse': np.sqrt(np.mean(np.square(train_df['error']))),
}
print(train_errors)
# Make a plot to visualize true vs predicted
plt.figure(1)
plt.clf()
plt.plot(train_df['x'], train_df['y_true'], 'r.', label='y_true')
plt.plot(train_df['x'], train_df['y_pred'], 'bo', alpha=0.25, label='y_pred')
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'Train data. MSE={np.round(train_errors["mse"], 5)}.')
plt.legend()
plt.show(block=False)
plt.savefig('true_vs_pred.png')
A problem you may encountering is that you don't have enough training data for the model to be able to fit well. In your example, you only have 21 training instances, each with only 1 feature. Broadly speaking with neural network models, you need on the order of 10K or more training instances to produce a decent model.
Consider the following code that generates a noisy sine wave and tries to train a densely-connected feed-forward neural network to fit the data. My model has two linear layers, each with 50 hidden units and a ReLU activation function. The experiments are parameterized with the variable num_points which I will increase.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(7)
def generate_data(num_points=100):
X = np.linspace(0.0 , 2.0 * np.pi, num_points).reshape(-1, 1)
noise = np.random.normal(0, 1, num_points).reshape(-1, 1)
y = 3 * np.sin(X) + noise
return X, y
def run_experiment(X_train, y_train, X_test, batch_size=64):
num_points = X_train.shape[0]
model = keras.Sequential()
model.add(layers.Dense(50, input_shape=(1, ), activation='relu'))
model.add(layers.Dense(50, activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(loss = "mse", optimizer = "adam", metrics=["mse"] )
history = model.fit(X_train, y_train, epochs=10,
batch_size=batch_size, verbose=0)
yhat = model.predict(X_test, batch_size=batch_size)
plt.figure(figsize=(5, 5))
plt.plot(X_train, y_train, "ro", markersize=2, label='True')
plt.plot(X_train, yhat, "bo", markersize=1, label='Predicted')
plt.ylim(-5, 5)
plt.title('N=%d points' % (num_points))
plt.legend()
plt.grid()
plt.show()
Here is how I invoke the code:
num_points = 100
X, y = generate_data(num_points)
run_experiment(X, y, X)
Now, if I run the experiment with num_points = 100, the model predictions (in blue) do a terrible job at fitting the true noisy sine wave (in red).
Now, here is num_points = 1000:
Here is num_points = 10000:
And here is num_points = 100000:
As you can see, for my chosen NN architecture, adding more training instances allows the neural network to better (over)fit the data.
If you do have a lot of training instances, then if you want to purposefully overfit your data, you can either increase the neural network capacity or reduce regularization. Specifically, you can control the following knobs:
increase the number of layers
increase the number of hidden units
increase the number of features per data instance
reduce regularization (e.g. by removing dropout layers)
use a more complex neural network architecture (e.g. transformer blocks instead of RNN)
You may be wondering if neural networks can fit arbitrary data rather than just a noisy sine wave as in my example. Previous research says that, yes, a big enough neural network can fit any data. See:
Universal approximation theorem. https://en.wikipedia.org/wiki/Universal_approximation_theorem
Zhang 2016, "Understanding deep learning requires rethinking generalization". https://arxiv.org/abs/1611.03530
As discussed in the comments, you should make a Python array (with NumPy) like this:-
Myarray = [[0.65, 1], [0.85, 0.5], ....]
Then you would just call those specific parts of the array whom you need to predict. Here the first value is the x-axis value. So you would call it to obtain the corresponding pair stored in Myarray
There are many resources to learn these types of things. some of them are ===>
https://www.geeksforgeeks.org/python-using-2d-arrays-lists-the-right-way/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=video&cd=2&cad=rja&uact=8&ved=0ahUKEwjGs-Oxne3oAhVlwTgGHfHnDp4QtwIILTAB&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQgfUT7i4yrc&usg=AOvVaw3LympYRszIYi6_OijMXH72
I'm using Random Forest Regressor to fit a 10-dimensional regression problem with around 300 thousand samples. Although not necessary when dealing with Random Forest I started by putting the data on the same scale (by using preprocessing of sklearn) and then I did a randomised search over the following parameter space:
n_estimators=[int(x) for x in linspace (start=100, stop= 2000, num=11)]
max_features= auto, sqrt
max_depth= from 1- to 150 with step =11
min_sampl_split=2,5,10,12
min_samples_leaf=1,2,4,6
Bootstrap true or false
Moreover, after getting the best parameters I did a second narrower search.
Though I am using a 10-Fold cross validation scheme with the random search I'm still getting a serious overfitting problem!
Moreover, I have also tried using DBSCAN algorithm to check for outliers. After excluding some parts of the dataset I got even worse results!
Should I include other parameters of the Random Forest in the randomised search? or should I apply some more preprocessing techniques on the data set before fitting?
For convenience, this is my implementation I wrote:
from sklearn.model_selection import ShuffleSplit
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
n_estimators = [int(x) for x in np.linspace(start = 1, stop =
15, num = 15)]
max_features = ['auto', 'sqrt']
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]
max_depth.append(None)
min_samples_split = [2, 5, 10,12]
min_samples_leaf = [1, 2, 4,6]
bootstrap = [True, False]
cv = ShuffleSplit(n_splits=10, test_size=0.01, random_state=0)
random_grid = {'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_samples_split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}
rf = RandomForestRegressor()
rf_random = RandomizedSearchCV(estimator = rf, param_distributions
= random_grid, n_iter = 50, cv = cv, verbose=2, random_state=42,
n_jobs = 32)
rf_random.fit(x_train, y_train)
the best parameters returned by the randomizedsearch function:
bootstrap: Fasle. Min_samples_leaf=2. n_estimators= 1647. Max_features: sqrt. min_samples_split=3. Max_depth: None.
The range of the target is from 0 to 10000 [unit]. This model is resulting in 6.98 [unit] RMSE accuracy on the training set and and average of 67.54 [unit] RMSE accuracy on the test sets.
that line
max_depth= from 1- to 150 with step =11
For a 10 feature problem, the optimum depth is under 10. You are overfitting like crazy beacause of that. consider putting max_depth from 1 to 15 with step 1
min_sampl_split=2,5,10,12
min_samples_leaf=1,2,4,6
This should help reduce the variance, however, the step of 11 for max_depth is killing all the efforts you could possibly make
So elastic net is supposed to be a hybrid between ridge regression (L2 regularization) and lasso (L1 regularization). However, it seems that even if l1_ratio is 0 I don't get the same result as ridge. I know ridge using gradient descent and elastic net uses coordinate descent, but the optima should be the same, no? Moreover, I've found that elasticnet often throws ConvergenceWarnings for no obvious reason, while lasso and ridge don't. Here's a snippet:
from sklearn.datasets import load_boston
from sklearn.utils import shuffle
from sklearn.linear_model import ElasticNet, Ridge, Lasso
from sklearn.model_selection import train_test_split
data = load_boston()
X, y = shuffle(data.data, data.target, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=43)
alpha = 1
en = ElasticNet(alpha=alpha, l1_ratio=0)
en.fit(X_train, y_train)
print('en train score: ', en.score(X_train, y_train))
rr = Ridge(alpha=alpha)
rr.fit(X_train, y_train)
print('rr train score: ', rr.score(X_train, y_train))
lr = Lasso(alpha=alpha)
lr.fit(X_train, y_train)
print('lr train score: ', lr.score(X_train, y_train))
print('---')
print('en test score: ', en.score(X_test, y_test))
print('rr test score: ', rr.score(X_test, y_test))
print('lr test score: ', lr.score(X_test, y_test))
print('---')
print('en coef: ', en.coef_)
print('rr coef: ', rr.coef_)
print('lr coef: ', lr.coef_)
Even though l1_ratio is 0, the train and test scores of elastic net are close to the lasso scores (and not ridge as you would expect). Moreover, elastic net seems to throw a ConvergenceWarning, even if I increase max_iter (even up to 1000000 there seems to be no effect) and tol (0.1 still throws an error, but 0.2 doesn't). Increasing alpha (as the warning suggests) also has no effect.
Based on the answer by #sascha, one can match the results between the two models:
import sklearn
print(sklearn.__version__)
from sklearn.linear_model import Ridge, ElasticNet
from sklearn.datasets import load_boston
dataset = load_boston()
X = dataset.data
y = dataset.target
f = Ridge(alpha=1,
fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=1e-4, random_state=42,
solver='auto')
g = ElasticNet(alpha=1/X.shape[0], l1_ratio=1e-16,
fit_intercept=True, normalize=False,
copy_X=True, max_iter=1000, tol=1e-4, random_state=42,
precompute=False, warm_start=False,
positive=False, selection='cyclic')
f.fit(X, y)
g.fit(X, y)
print(abs(f.coef_ - g.coef_) / abs(f.coef_))
Output:
0.19.2
[1.19195623e-14 1.17076625e-15 3.25973465e-13 1.61694280e-14
4.77274767e-15 4.15332538e-15 6.15640568e-14 1.61772832e-15
4.56125088e-14 5.44320605e-14 8.99189018e-15 2.31213025e-15
3.74181954e-15]
Just read the docs. Then you will find out that none of these is using Gradient-descent and more important:
Ridge
Elastic Net
which shows, when substituting a=1, p=0, that:
ElasticNet has one more sample-dependent factor on top of the loss not found in Ridge
ElasticNet has one more 1/2 factor in the l2-term
Why different models? Probably because sklearn follows the canonical/original R-based implementation glmnet.
Furthermore i would not be surprised to see numerical-issues when doing mixed-norm optimization while i'm forcing a non-mixed norm like l1=0, especially when there are specialized solvers for both non-mixed optimization-problems.
Luckily, sklearn even has to say something about it:
Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha.
I am new to machine learning and data science. Sorry, if it is a very stupid question.
I see there is an inbuilt function for cross-validation but not for a fixed validation set. I have a dataset with 50,000 samples labeled with years from 1990 to 2010. I need to train different classifiers on 1990-2008 samples, then validate on 2009 samples, and test on 2010 samples.
EDIT:
After #Quan Tran's answer, I tried this. This is how it should be?
# Fit a decision tree
estimator1 = DecisionTreeClassifier( max_depth = 9, max_leaf_nodes=9)
estimator1.fit(X_train, y_train)
print estimator1
# validate using validation set
acc = np.zeros((20,20)) # store accuracy
for i in range(20):
for j in range(20):
estimator1 = DecisionTreeClassifier(max_depth = i+1, max_leaf_nodes=j+2)
estimator1.fit(X_valid, y_valid)
y_pred = estimator1.predict(X_valid)
acc[i,j] = accuracy_score(y_valid, y_pred)
best_mod = np.where(acc == acc.max())
print best_mod
print acc[best_mod]
# Predict target values
estimator1 = DecisionTreeClassifier(max_depth = int(best_mod[0]) + 1, max_leaf_nodes= int(best_mod[1]) + 2)
estimator1.fit(X_valid, y_valid)
y_pred = estimator1.predict(X_test)
confusion = metrics.confusion_matrix(y_test, y_pred)
TP = confusion[1, 1]
TN = confusion[0, 0]
FP = confusion[0, 1]
FN = confusion[1, 0]
# Classification Accuracy
print "======= ACCURACY ========"
print((TP + TN) / float(TP + TN + FP + FN))
print accuracy_score(y_valid, y_pred)
# store the predicted probabilities for class
y_pred_prob = estimator1.predict_proba(X_test)[:, 1]
# plot a ROC curve for y_test and y_pred_prob
fpr, tpr, thresholds = metrics.roc_curve(y_test, y_pred_prob)
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.title('ROC curve for DecisionTreeClassifier')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.grid(True)
print("======= AUC ========")
print(metrics.roc_auc_score(y_test, y_pred_prob))
I get this answer, which is not the best accuracy.
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=9,
max_features=None, max_leaf_nodes=9, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
presort=False, random_state=None, splitter='best')
(array([5]), array([19]))
[ 0.8489011]
======= ACCURACY ========
0.574175824176
0.538461538462
======= AUC ========
0.547632099893
In this case, there are three separate sets. The train set, the test set and the validation set.
The train set is used to fit the parameters of the classifier. For example:
clf = DecisionTreeClassifier(max_depth=2)
clf.fit(trainfeatures, labels)
The validation set is used to tune the hyper parameters of the classifier or find the cutoff point for the training procedure. For example, in the case of Decision tree, max_depth is a hyper parameter. You will need to find a good set of hyper parameters by experimenting with different values of hyper parameters (tuning) and compare the performance measures (accuracy/precision,..) on the validation set.
The test set is used to estimate the error rate on unseen data. After having the performance measures on the test set, the model must not be trained/tuned any further.