I have three classes of points:
C1: {(4,1), (2,3), (3,5), (5,4), (1,6)}
C2: {(0,2), (-2,2), (-3,2), (-2,4)}
C3: {(1,-2), (3,-2)}
I also have a single-layer perceptron with 2 inputs, a bias term, and three outputs.
a) Can the net learn to separate the samples? (Assuming that we want yi = 1 if x ∈ Ci and yj = −1 for j != i)
b) Add the sample (-1,6) to C1. Now, can the net learn to separate the samples?
I don't know how to approach this problem. I don't need to specify the actual weights, but how do I determine whether the network will be able to separate the samples or not? Can this be done purely graphically, or is there a written proof?
you can see from the graph generated by the following code
import matplotlib.pyplot as plt
C1 = [(4,1), (2,3), (3,5), (5,4), (1,6), (-1,6)]
C2 = [(0,2), (-2,2), (-3,2), (-2,4)]
C3 = [(1,-2), (3,-2)]
plt.scatter([i[0] for i in C1],[i[1] for i in C1], c='b')
plt.scatter([i[0] for i in C2],[i[1] for i in C2], c='r')
plt.scatter([i[0] for i in C3],[i[1] for i in C3], c='g')
plt.show()
the data can be easily separated by linear lines, perceptron aka neural network with just 1 layer can learn to separate linear data
a full neural network with a few layers, can produce non linear separation, so it can do it easily
Related
If I had 2 features x1 and x2 where I know that the pattern is:
if x1 < x2 then
class1
else
class2
Can any machine learning algorithm find such a pattern? What algorithm would that be?
I know that I could create a third feature x3 = x1-x2. Then feature x3 can easily be used by some machine learning algorithms. For example a decision tree can solve the problem 100% using x3 and just 3 nodes (1 decision and 2 leaf nodes).
But, is it possible to solve this without creating new features? This seems like a problem that should be easily solved 100% if a machine learning algorithm could only find such a pattern.
I tried MLP and SVM with different kernels, including svg kernel and the results are not great. As an example of what I tried, here is the scikit-learn code where the SVM could only get a score of 0.992:
import numpy as np
from sklearn.svm import SVC
# Generate 1000 samples with 2 features with random values
X_train = np.random.rand(1000,2)
# Label each sample. If feature "x1" is less than feature "x2" then label as 1, otherwise label is 0.
y_train = X_train[:,0] < X_train[:,1]
y_train = y_train.astype(int) # convert boolean to 0 and 1
svc = SVC(kernel = "rbf", C = 0.9) # tried all kernels and C values from 0.1 to 1.0
svc.fit(X_train, y_train)
print("SVC score: %f" % svc.score(X_train, y_train))
Output running the code:
SVC score: 0.992000
This is an oversimplification of my problem. The real problem may have hundreds of features and different patterns, not just x1 < x2. However, to start with it would help a lot to know how to solve for this simple pattern.
To understand this, you must go into the settings of all the parameters provided by sklearn, and C in particular. It also helps to understand how the value of C influences the classifier's training procedure.
If you look at the equation in the User Guide for SVC, there are two main parts to the equation - the first part tries to find a small set of weights that solves the problem, and the second part tries to minimize the classification errors.
C is the penalty multiplier associated with misclassifications. If you decrease C, then you reduce the penalty (lower training accuracy but better generalization to test) and vice versa.
Try setting C to 1e+6. You will see that you almost always get 100% accuracy. The classifier has learnt the pattern x1 < x2. But it figures that a 99.2% accuracy is enough when you look at another parameter called tol. This controls how much error is negligible for you and by default it is set to 1e-3. If you reduce the tolerance, you can also expect to get similar results.
In general, I would suggest you to use something like GridSearchCV (link) to find the optimal values of hyper parameters like C as this internally splits the dataset into train and validation. This helps you to ensure that you are not just tweaking the hyperparameters to get a good training accuracy but you are also making sure that the classifier will do well in practice.
I'm a newbie to machine learning and this is one of the first real-world ML tasks challenged.
Some experimental data contains 512 independent boolean features and a boolean result.
There are about 1e6 real experiment records in the provided data set.
In a classic XOR example all 4 out of 4 possible states are required to train NN. In my case its only 2^(10-512) = 2^-505 which is close to zero.
I have no more information about the data nature, just these (512 + 1) * 1e6 bits.
Tried NN with 1 hidden layer on available data. Output of the trained NN on the samples even from the training set are always close to 0, not a single close to "1". Played with weights initialization, gradient descent learning rate.
My code utilizing TensorFlow 1.3, Python 3. Model excerpt:
with tf.name_scope("Layer1"):
#W1 = tf.Variable(tf.random_uniform([512, innerN], minval=-2/512, maxval=2/512), name="Weights_1")
W1 = tf.Variable(tf.zeros([512, innerN]), name="Weights_1")
b1 = tf.Variable(tf.zeros([1]), name="Bias_1")
Out1 = tf.sigmoid( tf.matmul(x, W1) + b1)
with tf.name_scope("Layer2"):
W2 = tf.Variable(tf.random_uniform([innerN, 1], minval=-2/512, maxval=2/512), name="Weights_2")
#W2 = tf.Variable(tf.zeros([innerN, 1]), name="Weights_2")
b2 = tf.Variable(tf.zeros([1]), name="Bias_2")
y = tf.nn.sigmoid( tf.matmul(Out1, W2) + b2)
with tf.name_scope("Training"):
y_ = tf.placeholder(tf.float32, [None,1])
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
labels = y_, logits = y)
)
train_step = tf.train.GradientDescentOptimizer(0.005).minimize(cross_entropy)
with tf.name_scope("Testing"):
# Test trained model
correct_prediction = tf.equal( tf.round(y), tf.round(y_))
# ...
# Train
for step in range(500):
batch_xs, batch_ys = Datasets.train.next_batch(300, shuffle=False)
_, my_y, summary = sess.run([train_step, y, merged_summaries],
feed_dict={x: batch_xs, y_: batch_ys})
I suspect two cases:
my fault – bad NN implementation, wrong architecture;
bad data. Compared to XOR example, incomplete training data would result in a failing NN. However, the training examples fed to the trained NN are supposed to give right predictions, aren't they?
How to evaluate if it is possible at all to train a neural network (a 2-layer perceptron) on the provided data to forecast the result? A case of aceptable set would be the XOR example. Opposed to some random noise.
There are only ad hoc ways to know if it is possible to learn a function with a differentiable network from a dataset. That said, these ad hoc ways do usually work. For example, the network should be able to overfit the training set without any regularisation.
A common technique to gauge this is to only fit the network on a subset of the full dataset. Check that the network can overfit to that, then increase the size of the subset, and increase the size of the network as well. Unfortunately, deciding whether to add extra layers or add more units in a hidden layer is an arbitrary decision you'll have to make.
However, looking at your code, there are a few things that could be going wrong here:
Are your outputs balanced? By that I mean, do you have the same number of 1s as 0s in the dataset targets?
Your initialisation in the first layer is all zeros, the gradient to this will be zero, so it can't learn anything (although, you have a real initialisation above it commented out).
Sigmoid nonlinearities are more difficult to optimise than simpler nonlinearities, such as ReLUs.
I'd recommend using the built-in definitions for layers in Tensorflow to not worry about initialisation, and switching to ReLUs in any hidden layers (you need sigmoid at the output for your boolean target).
Finally, deep learning isn't actually very good at most "bag of features" machine learning problems because they lack structure. For example, the order of the features doesn't matter. Other methods often work better, but if you really want to use deep learning then you could look at this recent paper, showing improved performance by just using a very specific nonlinearity and weight initialisation (change 4 lines in your code above).
I'm working on implementing an interface between a TensorFlow basic LSTM that's already been trained and a javascript version that can be run in the browser. The problem is that in all of the literature that I've read LSTMs are modeled as mini-networks (using only connections, nodes and gates) and TensorFlow seems to have a lot more going on.
The two questions that I have are:
Can the TensorFlow model be easily translated into a more conventional neural network structure?
Is there a practical way to map the trainable variables that TensorFlow gives you to this structure?
I can get the 'trainable variables' out of TensorFlow, the issue is that they appear to only have one value for bias per LSTM node, where most of the models I've seen would include several biases for the memory cell, the inputs and the output.
Internally, the LSTMCell class stores the LSTM weights as a one big matrix instead of 8 smaller ones for efficiency purposes. It is quite easy to divide it horizontally and vertically to get to the more conventional representation. However, it might be easier and more efficient if your library does the similar optimization.
Here is the relevant piece of code of the BasicLSTMCell:
concat = linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(1, 4, concat)
The linear function does the matrix multiplication to transform the concatenated input and the previous h state into 4 matrices of [batch_size, self._num_units] shape. The linear transformation uses a single matrix and bias variables that you're referring to in the question. The result is then split into different gates used by the LSTM transformation.
If you'd like to explicitly get the transformations for each gate, you can split that matrix and bias into 4 blocks. It is also quite easy to implement it from scratch using 4 or 8 linear transformations.
The neural network applications I've seen always learn the weights of their inputs and use fixed "hidden layers".
But I'm wondering about the following techniques:
1) fixed inputs, but the hidden layers are no longer fixed, in the sense that the functions of the input they compute can be tweaked (learned)
2) fixed inputs, but the hidden layers are no longer fixed, in the sense that although they have clusters which compute fixed functions (multiplication, addition, etc... just like ALUs in a CPU or GPU) of their inputs, the weights of the connections between them and between them and the input can be learned (this should in some ways be equivalent to 1) )
These could be used to model systems for which we know the inputs and the output but not how the input is turned into the output (figuring out what is inside a "black box"). Do such techniques exist and if so, what are they called?
For part (1) of your question, there are a couple of relatively recent techniques that come to mind.
The first one is a type of feedforward layer called "maxout" which computes a piecewise linear output function of its inputs.
Consider a traditional neural network unit with d inputs and a linear transfer function. We can describe the output of this unit as a function of its input z (a vector with d elements) as g(z) = w z, where w is a vector with d weight values.
In a maxout unit, the output of the unit is described as
g(z) = max_k w_k z
where w_k is a vector with d weight values, and there are k such weight vectors [w_1 ... w_k] per unit. Each of the weight vectors in the maxout unit computes some linear function of the input, and the max combines all of these linear functions into a single, convex, piecewise linear function. The individual weight vectors can be learned by the network, so that in effect each linear transform learns to model a specific part of the input (z) space.
You can read more about maxout networks at http://arxiv.org/abs/1302.4389.
The second technique that has recently been developed is the "parametric relu" unit. In this type of unit, all neurons in a network layer compute an output g(z) = max(0, w z) + a min(w z, 0), as compared to the more traditional rectified linear unit, which computes g(z) = max(0, w z). The parameter a is shared across all neurons in a layer in the network and is learned along with the weight vector w.
The prelu technique is described by http://arxiv.org/abs/1502.01852.
Maxout units have been shown to work well for a number of image classification tasks, particularly when combined with dropout to prevent overtraining. It's unclear whether the parametric relu units are extremely useful in modeling images, but the prelu paper gets really great results on what has for a while been considered the benchmark task in image classification.
I previously asked for an explanation of linearly separable data. Still reading Mitchell's Machine Learning book, I have some trouble understanding why exactly the perceptron rule only works for linearly separable data?
Mitchell defines a perceptron as follows:
That is, it is y is 1 or -1 if the sum of the weighted inputs exceeds some threshold.
Now, the problem is to determine a weight vector that causes the perceptron to produce the correct output (1 or -1) for each of the given training examples. One way of achieving this is through the perceptron rule:
One way to learn an acceptable weight vector is to begin with random
weights, then iteratively apply the perceptron to each training
example, modify- ing the perceptron weights whenever it misclassifies
an example. This process is repeated, iterating through the training
examples as many times as needed until the perceptron classifies all
training examples correctly. Weights are modified at each step
according to the perceptron training rule, which revises the weight wi
associated with input xi according to the rule:
So, my question is: Why does this only work with linearly separable data? Thanks.
Because the dot product of w and x is a linear combination of xs, and you, in fact, split your data into 2 classes using a hyperplane a_1 x_1 + … + a_n x_n > 0
Consider a 2D example: X = (x, y) and W = (a, b) then X * W = a*x + b*y. sgn returns 1 if its argument is greater than 0, that is, for class #1 you have a*x + b*y > 0, which is equivalent to y > -a/b x (assuming b != 0). And this equation is linear and divides a 2D plane into 2 parts.