My Code Doesn't Work to Equalize Histogram - image-processing

I tried to code histogram equalization operation in order to enhance contrast of the images, but my code didn't work. When I displayed image's original histogram and histogram after processed by my code I saw that output histogram only have a value at 0 and there aren't values for other pixel intensities. I don't know why. Here is my code:
private: System::Void histogramEqualizationToolStripMenuItem_Click(System::Object^ sender, System::EventArgs^ e) {
Raw_Intensity = ConvertBMPToIntensity(Buffer, Width, Height);
int histogram[256] = { 0 };
int equalizedHistogram[256] = { 0 };
int runningSum = 0;
int numberOfPixels = Width * Height;
for (int row = 0; row < Height; row++)
{
for (int column = 0; column < Width; column++)
{
histogram[Raw_Intensity[row * Width + column]]++;
}
}
for (int i = 0; i < 256; i++)
{
runningSum += histogram[i];
int index = round(((runningSum / numberOfPixels) * 255));
equalizedHistogram[index] += histogram[i];
}
}

I think the casting issue is occuring.
change this line :
int index = round(((runningSum / numberOfPixels) * 255));
to
int index = round(((runningSum*1.0 / numberOfPixels) * 255));

Related

Opencv Mat efficiency linearized by right triangle

How to efficiency linearized Mat (symmetric matrix) to one row by right triangle.
For example, when I have:
0aabbb
b0aaaa
ba0bba
bac0aa
aaaa0c
abcab0
and then from that I get:
aabbbaaaabbaaac
Something like this:
...
template<class T>
Mat SSMJ::triangleLinearized(Mat mat){
int c = mat.cols;
Mat row = Mat(1, ((c*c)-c)/2, mat.type());
int i = 0;
for(int y = 1; y < mat.rows; y++)
for(int x = y; x < mat.cols; x++) {
row.at<T>(i)=mat.at<T>(y, x);
i++;
}
return row;
}
...
Since data in your mat is just a 1d array stored in row.data you can do whatever you want with it. I don't think you will find anything more special (w/o using vectorized methods) than just copying from this array.
int rows = 6;
char data[] = { 0,1,2,3,4,5,
0,1,2,3,4,5,
0,1,2,3,4,5,
0,1,2,3,4,5,
0,1,2,3,4,5};
char result[100];
int offset = 0;
for (int i = 0; i < 5; offset += 5-i, i++) {
memcpy(&result[offset] , &data[rows * i + i + 1], 5 - i);
}
Or with opencv Mat it would be
int rows = mat.cols;
char result[100]; // you can calculate how much data u need
int offset = 0;
for (int i = 0; i < 5; offset += 5-i, i++) {
memcpy(&result[offset] , &mat.data[rows * i + i + 1], 5 - i);
}
Mat resultMat(1, offset, result);

How can I set the stride of an Image properly?

While converting from double[,] to Bitmap,
Bitmap image = ImageDataConverter.ToBitmap(new double[,]
{
{ .11, .11, .11, },
{ .11, .11, .11, },
{ .11, .11, .11, },
});
the routine gives
data.Stride == 4
Where does this value come from?
Since the double[,] is 3x3, stride should be 5. Right?
How can I fix this not only for this one, but also for any dimension?
Relevant Source Code
public class ImageDataConverter
{
public static Bitmap ToBitmap(double[,] input)
{
int width = input.GetLength(0);
int height = input.GetLength(1);
Bitmap output = Grayscale.CreateGrayscaleImage(width, height);
BitmapData data = output.LockBits(new Rectangle(0, 0, width, height),
ImageLockMode.WriteOnly,
output.PixelFormat);
int pixelSize = System.Drawing.Image.GetPixelFormatSize(output.PixelFormat) / 8;
int offset = data.Stride - width * pixelSize;
double Min = 0.0;
double Max = 255.0;
unsafe
{
byte* address = (byte*)data.Scan0.ToPointer();
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
double v = 255 * (input[x, y] - Min) / (Max - Min);
byte value = unchecked((byte)v);
for (int c = 0; c < pixelSize; c++, address++)
{
*address = value;
}
}
address += offset;
}
}
output.UnlockBits(data);
return output;
}
}
Don't know how you arrived at 5.
The stride is the width of a single row of pixels (a scan line), rounded up to a four-byte boundary.
Link
Since it's 3x3, 3 rounded up to four-byte boundary is 4.

How to swap bit U with bit V in YUV format

I want to swap the U and V bit in YUV format, from NV12
YYYYYYYY UVUV // each letter presents a bit
to NV21
YYYYYYYY VUVU
I leave the Y planar alone, and handle the U and V planar by the function below
uchar swap(uchar in) {
uchar out = ((in >> 1) & 0x55) | ((in << 1) & 0xaa);
return out;
}
But I cannot get the desired result, the colour of the output image still not correct.
How can I swap U and V planar correctly?
Found the problem. UV should be manipulated in byte format, not bit.
byte[] yuv = // ...
final int length = yuv.length;
for (int i1 = 0; i1 < length; i1 += 2) {
if (i1 >= width * height) {
byte tmp = yuv[i1];
yuv[i1] = yuv[i1+1];
yuv[i1+1] = tmp;
}
}
try this method (-_-)
IFrameCallback iFrameCallback = new IFrameCallback() {
#Override
public void onFrame(ByteBuffer frame) {
//get nv12 data
byte[] b = new byte[frame.remaining()];
frame.get(b);
//nv12 data to nv21
NV12ToNV21(b, 1280, 720);
//send NV21 data
BVPU.InputVideoData(nv21, nv21.length,
System.currentTimeMillis() * 1000, 1280, 720);
}
};
byte[] nv21;
private void NV12ToNV21(byte[] data, int width, int height) {
nv21 = new byte[data.length];
int framesize = width * height;
int i = 0, j = 0;
System.arraycopy(data, 0, nv21, 0, framesize);
for (i = 0; i < framesize; i++) {
nv21[i] = data[i];
}
for (j = 0; j < framesize / 2; j += 2) {
nv21[framesize + j - 1] = data[j + framesize];
}
for (j = 0; j < framesize / 2; j += 2) {
nv21[framesize + j] = data[j + framesize - 1];
}
}

Sampling custom float texture2D in HLSL

I am wondering how to actually sample the data I am passing to the shader file. I am using two methods, is it the same for both? Are there any resources online for me to actually read up on this sort of thing?
Compiling at 5.0 but the version number does not matter so much.
I have two methods to pass the data.
The first;
for( UINT row = 0; row < textureDesc.Height; row++ )
{
UINT rowStart = row * mappedResource.RowPitch;
for( UINT col = 0; col < textureDesc.Width; col++ )
{
//width * number of channels (r,g,b,a)
UINT colStart = col * 4;
pTexels[rowStart + colStart + 0] = 10.0f; // Red
pTexels[rowStart + colStart + 1] = 10.0f; // Green
pTexels[rowStart + colStart + 2] = 255.0f; // Blue
pTexels[rowStart + colStart + 3] = 255.0f; // Alpha
}
}
The second;
float elements[416][416];
int elementsCount = 416*416;
for( int i = 0; i < 416; i++ )
{
for( int k = 0; k < 416; k++ )
{
elements[i][k] = 0;
}
}
memcpy(mappedResource.pData, elements, sizeof(float) * elementsCount);
Seems that I missed an important part of all of this.
When creating a texture, in the texture description, the Format is the type that will be returned when the object is sampled. Many thanks to Drop for the help.

Gaussian Blur Questions

I'm writing a gaussian filter, and my goal is to match the gaussian blur filter in photoshop as closely as possible. This is my first image processing endeavor. Some problems/questions I have are...
Further blurring an image with my filter darkens it, while photoshop’s seems to lighten it.
The deviation value (“sigma,” in my code) I’m using is r/3, which results in the gaussian curve having approached about 0.0001 within the matrix...is there a better way to determine this value?
How does photoshop (or most people) handle image borders for this type of blur?
int matrixDimension = (radius*2)+1;
float sigma = radius/3;
float twoSigmaSquared = 2*pow(sigma, 2);
float oneOverSquareRootOfTwoPiSigmaSquared = 1/(sqrt(M_PI*twoSigmaSquared));
float kernel[matrixDimension];
int index = 0;
for (int offset = -radius; offset <= radius; offset++) {
float xSquared = pow(offset, 2);
float exponent = -(xSquared/twoSigmaSquared);
float eToThePower = pow(M_E, exponent);
float multFactor = oneOverSquareRootOfTwoPiSigmaSquared*eToThePower;
kernel[index] = multFactor;
index++;
}
//Normalize the kernel such that all its values will add to 1
float sum = 0;
for (int i = 0; i < matrixDimension; i++) {
sum += kernel[i];
}
for (int i = 0; i < matrixDimension; i++) {
kernel[i] = kernel[i]/sum;
}
//Blur horizontally
for (int row = 0; row < imageHeight; row++) {
for (int column = 0; column < imageWidth; column++) {
int currentPixel = (row*imageWidth)+column;
int sum1 = 0;
int sum2 = 0;
int sum3 = 0;
int sum4 = 0;
int index = 0;
for (int offset = -radius; offset <= radius; offset++) {
if (!(column+offset < 0) && !(column+offset > imageWidth-1)) {
int firstByteOfPixelWereLookingAtInSrcData = (currentPixel+offset)*4;
int in1 = srcData[firstByteOfPixelWereLookingAtInSrcData];
int in2 = srcData[firstByteOfPixelWereLookingAtInSrcData+1];
int in3 = srcData[firstByteOfPixelWereLookingAtInSrcData+2];
int in4 = srcData[firstByteOfPixelWereLookingAtInSrcData+3];
sum1 += (int)(in1 * kernel[index]);
sum2 += (int)(in2 * kernel[index]);
sum3 += (int)(in3 * kernel[index]);
sum4 += (int)(in4 * kernel[index]);
}
index++;
}
int currentPixelInData = currentPixel*4;
destData[currentPixelInData] = sum1;
destData[currentPixelInData+1] = sum2;
destData[currentPixelInData+2] = sum3;
destData[currentPixelInData+3] = sum4;
}
}
//Blur vertically
for (int row = 0; row < imageHeight; row++) {
for (int column = 0; column < imageWidth; column++) {
int currentPixel = (row*imageWidth)+column;
int sum1 = 0;
int sum2 = 0;
int sum3 = 0;
int sum4 = 0;
int index = 0;
for (int offset = -radius; offset <= radius; offset++) {
if (!(row+offset < 0) && !(row+offset > imageHeight-1)) {
int firstByteOfPixelWereLookingAtInSrcData = (currentPixel+(offset*imageWidth))*4;
int in1 = destData[firstByteOfPixelWereLookingAtInSrcData];
int in2 = destData[firstByteOfPixelWereLookingAtInSrcData+1];
int in3 = destData[firstByteOfPixelWereLookingAtInSrcData+2];
int in4 = destData[firstByteOfPixelWereLookingAtInSrcData+3];
sum1 += (int)(in1 * kernel[index]);
sum2 += (int)(in2 * kernel[index]);
sum3 += (int)(in3 * kernel[index]);
sum4 += (int)(in4 * kernel[index]);
}
index++;
}
int currentPixelInData = currentPixel*4;
finalData[currentPixelInData] = sum1;
finalData[currentPixelInData+1] = sum2;
finalData[currentPixelInData+2] = sum3;
finalData[currentPixelInData+3] = sum4;
}
}
To reverse engineer a filter, you need to find its impulse response. On a background of a very dark value, say 32, place a nearly white pixel, say 223. You don't want to use 0 and 255 because some filters will try to create values beyond the starting values. Run the filter on this image, and take the output values and stretch them from 0.0 to 1.0: (value-32)/(223-32). Now you have the exact weights needed to emulate the filter.
There are lots of ways to treat the image edges. I would suggest taking the filter weights and summing them, then dividing the result by that sum; if you're trying to go beyond the edge, use 0.0 for both the pixel value and the filter weight on that pixel.
Boundary conditions sometimes depend on exactly what you're doing and what kind of data you're working with, but I think for general purpose image manipulation the best thing to do is to extend the values at the borders beyond the edges of the image. Not literally of course, but if the filter tries to read a pixel that's outside the image borders, you substitute the value of the nearest pixel on the edge of the image. Which is really the same as just clamping the row to be between 0 and height, and the column to be between 0 and width.

Resources