sklearn multiclass svm function - machine-learning

I have multi class labels and want to compute the accuracy of my model.
I am kind of confused on which sklearn function I need to use.
As far as I understood the below code is only used for the binary classification.
# dividing X, y into train and test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,random_state = 0)
# training a linear SVM classifier
from sklearn.svm import SVC
svm_model_linear = SVC(kernel = 'linear', C = 1).fit(X_train, y_train)
svm_predictions = svm_model_linear.predict(X_test)
# model accuracy for X_test
accuracy = svm_model_linear.score(X_test, y_test)
print accuracy
and as I understood from the link:
Which decision_function_shape for sklearn.svm.SVC when using OneVsRestClassifier?
for multiclass classification I should use OneVsRestClassifier with decision_function_shape (with ovr or ovo and check which one works better)
svm_model_linear = OneVsRestClassifier(SVC(kernel = 'linear',C = 1, decision_function_shape = 'ovr')).fit(X_train, y_train)
The main problem is that the time of predicting the labels does matter to me but it takes about 1 minute to run the classifier and predict the data (also this time is added to the feature reduction such as PCA which also takes sometime)? any suggestions to reduce the time for svm multiclassifer?

There are multiple things to consider here:
1) You see, OneVsRestClassifier will separate out all labels and train multiple svm objects (one for each label) on the given data. So each time, only binary data will be supplied to single svm object.
2) SVC internally uses libsvm and liblinear, which have a 'OvO' strategy for multi-class or multi-label output. But this point will be of no use because of point 1. libsvm will only get binary data.
Even if it did, it doesnt take into account the 'decision_function_shape'. So it does not matter if you provide decision_function_shape = 'ovr' or decision_function_shape = 'ovr'.
So it seems that you are looking at the problem wrong. decision_function_shape should not affect the speed. Try standardizing your data before fitting. SVMs work well with standardized data.

When wrapping models with the ovr or ovc classifiers, you could set the n_jobs parameters to make them run faster, e.g. sklearn.multiclass.OneVsOneClassifier(estimator, n_jobs=-1) or sklearn.multiclass.OneVsRestClassifier(estimator, n_jobs=-1).
Although each single SVM classifier in sklearn could only use one CPU core at a time, the ensemble multi class classifier could fit multiple models at the same time by setting n_jobs.

Related

How to compare baseline and GridSearchCV results fair?

I am a bit confusing with comparing best GridSearchCV model and baseline.
For example, we have classification problem.
As a baseline, we'll fit a model with default settings (let it be logistic regression):
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
baseline = LogisticRegression()
baseline.fit(X_train, y_train)
pred = baseline.predict(X_train)
print(accuracy_score(y_train, pred))
So, the baseline gives us accuracy using the whole train sample.
Next, GridSearchCV:
from sklearn.model_selection import cross_val_score, GridSearchCV, StratifiedKFold
X_val, X_test_val,y_val,y_test_val = train_test_split(X_train, y_train, test_size=0.3, random_state=42)
cv = StratifiedKFold(n_splits=5, random_state=0, shuffle=True)
parameters = [ ... ]
best_model = GridSearchCV(LogisticRegression(parameters,scoring='accuracy' ,cv=cv))
best_model.fit(X_val, y_val)
print(best_model.best_score_)
Here, we have accuracy based on validation sample.
My questions are:
Are those accuracy scores comparable? Generally, is it fair to compare GridSearchCV and model without any cross validation?
For the baseline, isn't it better to use Validation sample too (instead of the whole Train sample)?
No, they aren't comparable.
Your baseline model used X_train to fit the model. Then you're using the fitted model to score the X_train sample. This is like cheating because the model is going to already perform the best since you're evaluating it based on data that it has already seen.
The grid searched model is at a disadvantage because:
It's working with less data since you have split the X_train sample.
Compound that with the fact that it's getting trained with even less data due to the 5 folds (it's training with only 4/5 of X_val per fold).
So your score for the grid search is going to be worse than your baseline.
Now you might ask, "so what's the point of best_model.best_score_? Well, that score is used to compare all the models used when searching for the optimal hyperparameters in your search space, but in no way should be used to compare against a model that was trained outside of the grid search context.
So how should one go about conducting a fair comparison?
Split your training data for both models.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Fit your models using X_train.
# fit baseline
baseline.fit(X_train, y_train)
# fit using grid search
best_model.fit(X_train, y_train)
Evaluate models against X_test.
# baseline
baseline_pred = baseline.predict(X_test)
print(accuracy_score(y_test, baseline_pred))
# grid search
grid_pred = best_model.predict(X_test)
print(accuracy_score(y_test, grid_pred))

scikit-learn and imblearn: does GridSearchCV/RandomSearchCV apply preprocessing to the validation set as well?

I'm currently using sklearn for a school project and I have some questions about how GridsearchCV applies preprocessing algorithms such as PCA or Factor Analysis. Let's suppose I perform hold out:
X_tr, X_ts, y_tr, y_ts = train_test_split(X, y, test_size = 0.1, stratify = y)
Then, I declare some hyperparameters and perform a GridSearchCV (it would be the same with RandomSearchCV but whatever):
params = {
'linearsvc__C' : [...],
'linearsvc__tol' : [...],
'linearsvc__degree' : [...]
}
clf = make_pipeline(PCA(), SVC(kernel='linear'))
model = GridSearchCV(clf, params, cv = 5, verbose = 2, n_jobs = -1)
model.fit(X_tr, y_tr)
My issue is: my teacher told me that you should never fit the preprocessing algorithm (here PCA) on the validation set in case of a k fold cv, but only on the train split (here both the train split and validation split are subsets of X_tr, and of course they change at every fold). So if I have PCA() here, it should fit on the part of the fold used for training the model and eventually when I test the resulting model against the validation split, preprocess it using the PCA model obtained fitting it against the training set. This ensures no leaks whatsowever.
Does sklearn account for this?
And if it does: suppose that now I want to use imblearn to perform oversampling on an unbalanced set:
clf = make_pipeline(SMOTE(), SVC(kernel='linear'))
still according to my teacher, you shouldn't perform oversampling on the validation split as well, as this could lead to inaccurate accuracies. So the statement above that held for PCA about transforming the validation set on a second moment does not apply here.
Does sklearn/imblearn account for this as well?
Many thanks in advance

Are the k-fold cross-validation scores from scikit-learn's `cross_val_score` and `GridsearchCV` biased if we include transformers in the pipeline?

Data pre-processers such as StandardScaler should be used to fit_transform the train set and only transform (not fit) the test set. I expect the same fit/transform process applies to cross-validation for tuning the model. However, I found cross_val_score and GridSearchCV fit_transform the entire train set with the preprocessor (rather than fit_transform the inner_train set, and transform the inner_validation set). I believe this artificially removes the variance from the inner_validation set which makes the cv score (the metric used to select the best model by GridSearch) biased. Is this a concern or did I actually miss anything?
To demonstrate the above issue, I tried the following three simple test cases with the Breast Cancer Wisconsin (Diagnostic) Data Set from Kaggle.
I intentionally fit and transform the entire X with StandardScaler()
X_sc = StandardScaler().fit_transform(X)
lr = LogisticRegression(penalty='l2', random_state=42)
cross_val_score(lr, X_sc, y, cv=5)
I include SC and LR in the Pipeline and run cross_val_score
pipe = Pipeline([
('sc', StandardScaler()),
('lr', LogisticRegression(penalty='l2', random_state=42))
])
cross_val_score(pipe, X, y, cv=5)
Same as 2 but with GridSearchCV
pipe = Pipeline([
('sc', StandardScaler()),
('lr', LogisticRegression(random_state=42))
])
params = {
'lr__penalty': ['l2']
}
gs=GridSearchCV(pipe,
param_grid=params, cv=5).fit(X, y)
gs.cv_results_
They all produce the same validation scores.
[0.9826087 , 0.97391304, 0.97345133, 0.97345133, 0.99115044]
No, sklearn doesn't do fit_transform with entire dataset.
To check this, I subclassed StandardScaler to print the size of the dataset sent to it.
class StScaler(StandardScaler):
def fit_transform(self,X,y=None):
print(len(X))
return super().fit_transform(X,y)
If you now replace StandardScaler in your code, you'll see dataset size passed in first case is actually bigger.
But why does the accuracy remain exactly same? I think this is because LogisticRegression is not very sensitive to feature scale. If we instead use a classifier that is very sensitive to scale, like KNeighborsClassifier for example, you'll find accuracy between two cases start to vary.
X,y = load_breast_cancer(return_X_y=True)
X_sc = StScaler().fit_transform(X)
lr = KNeighborsClassifier(n_neighbors=1)
cross_val_score(lr, X_sc,y, cv=5)
Outputs:
569
[0.94782609 0.96521739 0.97345133 0.92920354 0.9380531 ]
And the 2nd case,
pipe = Pipeline([
('sc', StScaler()),
('lr', KNeighborsClassifier(n_neighbors=1))
])
print(cross_val_score(pipe, X, y, cv=5))
Outputs:
454
454
456
456
456
[0.95652174 0.97391304 0.97345133 0.92920354 0.9380531 ]
Not big change accuracy-wise, but change nonetheless.
Learning the parameters of a prediction function and testing it on the same data is a methodological mistake: a model that would just repeat the labels of the samples that it has just seen would have a perfect score but would fail to predict anything useful on yet-unseen data. This situation is called overfitting. To avoid it, it is common practice when performing a (supervised) machine learning experiment to hold out part of the available data as a test set X_test, y_test
A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be held out for final evaluation, but the validation set is no longer needed when doing CV. In the basic approach, called k-fold CV, the training set is split into k smaller sets (other approaches are described below, but generally follow the same principles). The following procedure is followed for each of the k “folds”:
A model is trained using of the folds as training data;
the resulting model is validated on the remaining part of the data (i.e., it is used as a test set to compute a performance measure such as accuracy).
The performance measure reported by k-fold cross-validation is then the average of the values computed in the loop. This approach can be computationally expensive, but does not waste too much data (as is the case when fixing an arbitrary validation set), which is a major advantage in problems such as inverse inference where the number of samples is very small.
More over if your model is already biased from starting we have to make it balance by SMOTE /Oversampling of Less Target Variable/Under-sampling of High target variable.

How to predict on a single data sample when preprocssing is needed

When I read scikit learn example, a typical machine learning flow is prepocessing --> learning --> predicting. As the code snippet shown below:
steps = [('scalar', StandardScalar()),
('knn', KNeighborsClassifier())]
pipeline = Pipeline(steps)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
knn_scaled = pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
Here, both training and testing dataset are scaled before fitting into the classifier. But in my task, I am going to predict on a single data sample. After training my model, I will get data from a streaming line. So each time, a single new data is received, I need to use the classifier to predict on it, and preceed my task with the predicted value.
So with only one example available each time, how to preprocess it before predicting? Scaling on this single example seems make no sense. How should I deal with such issue?
just as you train your classifier and use the generated model to predict the individual records, preprocessing step generates a preprocessing model as well. Let's say your input is Xi and you fitted the preprocessing and classifier models(scaler and clf respectively) already:
Xi_new=scaler.transform(Xi)
print(clf.predict(Xi_new))

Cross Validation in Keras

I'm implementing a Multilayer Perceptron in Keras and using scikit-learn to perform cross-validation. For this, I was inspired by the code found in the issue Cross Validation in Keras
from sklearn.cross_validation import StratifiedKFold
def load_data():
# load your data using this function
def create model():
# create your model using this function
def train_and_evaluate__model(model, data[train], labels[train], data[test], labels[test)):
# fit and evaluate here.
if __name__ == "__main__":
X, Y = load_model()
kFold = StratifiedKFold(n_splits=10)
for train, test in kFold.split(X, Y):
model = None
model = create_model()
train_evaluate(model, X[train], Y[train], X[test], Y[test])
In my studies on neural networks, I learned that the knowledge representation of the neural network is in the synaptic weights and during the network tracing process, the weights that are updated to thereby reduce the network error rate and improve its performance. (In my case, I'm using Supervised Learning)
For better training and assessment of neural network performance, a common method of being used is cross-validation that returns partitions of the data set for training and evaluation of the model.
My doubt is...
In this code snippet:
for train, test in kFold.split(X, Y):
model = None
model = create_model()
train_evaluate(model, X[train], Y[train], X[test], Y[test])
We define, train and evaluate a new neural net for each of the generated partitions?
If my goal is to fine-tune the network for the entire dataset, why is it not correct to define a single neural network and train it with the generated partitions?
That is, why is this piece of code like this?
for train, test in kFold.split(X, Y):
model = None
model = create_model()
train_evaluate(model, X[train], Y[train], X[test], Y[test])
and not so?
model = None
model = create_model()
for train, test in kFold.split(X, Y):
train_evaluate(model, X[train], Y[train], X[test], Y[test])
Is my understanding of how the code works wrong? Or my theory?
If my goal is to fine-tune the network for the entire dataset
It is not clear what you mean by "fine-tune", or even what exactly is your purpose for performing cross-validation (CV); in general, CV serves one of the following purposes:
Model selection (choose the values of hyperparameters)
Model assessment
Since you don't define any search grid for hyperparameter selection in your code, it would seem that you are using CV in order to get the expected performance of your model (error, accuracy etc).
Anyway, for whatever reason you are using CV, the first snippet is the correct one; your second snippet
model = None
model = create_model()
for train, test in kFold.split(X, Y):
train_evaluate(model, X[train], Y[train], X[test], Y[test])
will train your model sequentially over the different partitions (i.e. train on partition #1, then continue training on partition #2 etc), which essentially is just training on your whole data set, and it is certainly not cross-validation...
That said, a final step after the CV which is often only implied (and frequently missed by beginners) is that, after you are satisfied with your chosen hyperparameters and/or model performance as given by your CV procedure, you go back and train again your model, this time with the entire available data.
You can use wrappers of the Scikit-Learn API with Keras models.
Given inputs x and y, here's an example of repeated 5-fold cross-validation:
from sklearn.model_selection import RepeatedKFold, cross_val_score
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.wrappers.scikit_learn import KerasRegressor
def buildmodel():
model= Sequential([
Dense(10, activation="relu"),
Dense(5, activation="relu"),
Dense(1)
])
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
return(model)
estimator= KerasRegressor(build_fn=buildmodel, epochs=100, batch_size=10, verbose=0)
kfold= RepeatedKFold(n_splits=5, n_repeats=100)
results= cross_val_score(estimator, x, y, cv=kfold, n_jobs=2) # 2 cpus
results.mean() # Mean MSE
I think many of your questions will be answered if you read about nested cross-validation. This is a good way to "fine tune" the hyper parameters of your model. There's a thread here:
https://stats.stackexchange.com/questions/65128/nested-cross-validation-for-model-selection
The biggest issue to be aware of is "peeking" or circular logic. Essentially - you want to make sure that none of data used to assess model accuracy is seen during training.
One example where this might be problematic is if you are running something like PCA or ICA for feature extraction. If doing something like this, you must be sure to run PCA on your training set, and then apply the transformation matrix from the training set to the test set.
The main idea of testing your model performance is to perform the following steps:
Train a model on a training set.
Evaluate your model on a data not used during training process in order to simulate a new data arrival.
So basically - the data you should finally test your model should mimic the first data portion you'll get from your client/application to apply your model on.
So that's why cross-validation is so powerful - it makes every data point in your whole dataset to be used as a simulation of new data.
And now - to answer your question - every cross-validation should follow the following pattern:
for train, test in kFold.split(X, Y
model = training_procedure(train, ...)
score = evaluation_procedure(model, test, ...)
because after all, you'll first train your model and then use it on a new data. In your second approach - you cannot treat it as a mimicry of a training process because e.g. in second fold your model would have information kept from the first fold - which is not equivalent to your training procedure.
Of course - you could apply a training procedure which uses 10 folds of consecutive training in order to finetune network. But this is not cross-validation then - you'll need to evaluate this procedure using some kind of schema above.
The commented out functions make this a little less obvious, but the idea is to keep track of your model performance as you iterate through your folds and at the end provide either those lower level performance metrics or an averaged global performance. For example:
The train_evaluate function ideally would output some accuracy score for each split, which could be combined at the end.
def train_evaluate(model, x_train, y_train, x_test, y_test):
model.fit(x_train, y_train)
return model.score(x_test, y_test)
X, Y = load_model()
kFold = StratifiedKFold(n_splits=10)
scores = np.zeros(10)
idx = 0
for train, test in kFold.split(X, Y):
model = create_model()
scores[idx] = train_evaluate(model, X[train], Y[train], X[test], Y[test])
idx += 1
print(scores)
print(scores.mean())
So yes you do want to create a new model for each fold as the purpose of this exercise is to determine how your model as it is designed performs on all segments of the data, not just one particular segment that may or may not allow the model to perform well.
This type of approach becomes particularly powerful when applied along with a grid search over hyperparameters. In this approach you train a model with varying hyperparameters using the cross validation splits and keep track of the performance on splits and overall. In the end you will be able to get a much better idea of which hyperparameters allow the model to perform best. For a much more in depth explanation see sklearn Model Selection and pay particular attention to the sections of Cross Validation and Grid Search.

Resources