Find the start of a given week and year with Delphi - delphi

I'm looking for a Delphi (10+) function that returns a TDate with a given year and a week number:
function StartDate(2021, 53): TDate should return 2021-01-01.
While WeekOfTheYear(EncodeDate(2021,1,1)) returns 53 (correct), I can't do the other way round with StartOfAWeek(2021,53, 1) nor StartOfAWeek(2021,53, 5) (5=it's a friday) - it's not recognized as a valid date (=exception). Any suggestions?
Edited:
I'm looking for a ISO 8601 compliant function (like the internal Delphi routines), with Monday=1 and special week consideration (like 2021-01-01), or to be more precise: the "vice versa" routine of WeekOfTheYear

The function you need is:
StartOfAWeek(Year, Week, 1)
You observe that StartOfAWeek(2021, 53, 1) raises an exception. That is correct because 2021 does not have 53 weeks. It only has 52. Week 52 ends on the last day of 2021.
You are getting confused by the result of
WeekOfTheYear(EncodeDate(2021,1,1))
This returns 53, but because the date is at the start of the year, this is week 53 of 2020.

Related

How to calculate the difference in minutes between two bedtimes (NOT time elapsed)?

I'm trying to get Google Sheets functions to calculate the difference in minutes between two bedtimes and have been spinning my wheels for at least five hours on this. Here are four examples of what I'm trying to accomplish:
BEDTIME 1 BEDTIME 2 DIFF IN MINS
9:00 PM 9:15 PM 15
9:00 PM 10:00 PM 60
11:30 PM 1:00 AM 90
1:00 AM 11:00 PM 120
As you can see, the date doesn't figure at all. I apologize for not offering up code, but I've tried at least half a dozen approaches from other answers and they aren't working -- mainly, I suspect, because most people are looking to find the time elapsed between the two times whereas I'm looking to determine "how much earlier" or "how much later" one bedtime is relative to another (always expressed as a positive value).
Any help would be appreciated. Thanks.
Times are stored as numbers between 0 and 1. If you subtract two times and multiply the result by 24 x 60 = 1440 and format as a number you’ll get number of minutes. I think you’ll need something like:
=MIN(ABS(1440*(B1-A1)), ABS(1440*(B1-A1-1)), ABS(1440*(B1-A1+1)))
The difference between two times is a duration. The question requests that durations be converted to "digital minutes", but that is often not as readable as one would think. 175 minutes is more difficult to understand than 2:55 hours.
There is therefore usually no point in multiplying by 24 * 60 — instead, just use the duration value as is:
=min( abs(B2 - A2), abs(B2 - A2 - 1), abs(B2 - A2 + 1) )
Format the result cell as Format > Number > Duration.
See this answer for an explanation of how date and time values work in spreadsheets.
use arrayformula:
=INDEX(IFERROR(1/(1/TRANSPOSE(QUERY(TRANSPOSE(
IF(A2:A&B2:B="", 0, ABS(1440*(B2:B-A2:A+{-1, 0, 1})))),
"select "&TEXTJOIN(",", 1,
"min(Col"&ROW(A2:A)-ROW(A2)+1&")"))))),, 2)
or:
=INDEX(IFERROR(1/(1/QUERY(SPLIT(FLATTEN(
ROW(A2:A)&"×"&ABS(1440*(B2:B-A2:A+{-1, 0, 1}))), "×"),
"select min(Col2) group by Col1 label min(Col2)''"))))
Try to implement a modulus function in your code. It would basically do something like this:
If x = -5, then y = f(x) = – (-5) = 5, since x is less than zero
If x = 10, then y = f(x) = 10, since x is greater than zero
If x = 0, then y = f(x) = 0, since x is equal to zero
Therefore calculating how much time passed without negative values.

How do I get the first two digits from a number?

I need to make a code that tells you the century when you give the year. I have this:
local kata = {}
function kata.century(number)
if number%100 == 0 then >I need to get the first two numbers
return
else
return number/100 + 1
end
end
return kata
I basically need a line that gives me the first two numbers of the year for years like "1700" and "2000"
so I can divide them by 100 and add 1.
(i'm a beginner btw)
In Lua 5.3+, use number//100.
For earlier versions, use math.floor(number/100).
According to the Gregorian calendar, 1 CE was the first year of the 1st Century CE. Since a century is a period of 100 years, this means that the first year of any century in the common era ends with a 1; thus 2000 was the last year of the 20th Century, and 2001 was the first year of the 21st Century.
Finding the century from the first two digits of the year alone will not work for this strictly correct method of identification. Taking the first two digits of 2000, and adding 1 would yield the 21st Century. But, instead of using math.floor to truncate the result of division by 10, one can use math.ceil to get the smallest integer greater than the result of the division.
function century (year)
return math.ceil(year / 100)
end
This century function gives the correct century given a year in the common era:
> century(1)
1
> century(100)
1
> century(101)
2
> century(2000)
20
> century(2001)
21
There is a convention in popular usage that centuries should be numbered based on shared digits instead of the Gregorian calendar. In this usage all years beginning with 20 are in the 21st Century, making 2000 the first year of the 21st Century. Since there is no year 0 in the Gregorian calendar, this means that the 1st Century (from 1 CE to 99 CE under this convention) spans 99 years, but all other centuries in the common era span 100 years (e.g., 100 CE to 199 CE). Finding the century from the year using this convention can be done by dividing the year by 100 and taking the floor of the result.
If the goal is to match popular expectations and follow the general popular misunderstanding of numbering centuries, use the floor method. But, if the goal is to get correct and consistent numbering of centuries based on the Gregorian calendar, use the ceiling method.

why pytz.country_timezones('cn') in centos system have different result?

Two computer install centos 6.5, kernel is 3.10.44, have different result.
one result is [u'Asia/Shanghai', u'Asia/Urumqi'], and the other is ['Asia/Shanghai', 'Asia/Harbin', 'Asia/Chongqing', 'Asia/Urumqi', 'Asia/Kashgar'].
Is there any config that make the first result same as the second result?
I have following python code:
def get_date():
date = datetime.utcnow()
from_zone = pytz.timezone("UTC")
to_zone = pytz.timezone("Asia/Urumqi")
date = from_zone.localize(date)
date = date.astimezone(to_zone)
return date
def get_curr_time_stamp():
date = get_date()
stamp = time.mktime(date.timetuple())
return stamp
cur_time = get_curr_time_stamp()
print "1", time.strftime("%Y %m %d %H:%M:%S", time.localtime(time.time()))
print "2", time.strftime("%Y %m %d %H:%M:%S", time.localtime(cur_time))
When use this code to get time, the result of one computer(have 2 results) is:
1 2016 04 20 08:53:18
2 2016 04 20 06:53:18
and the other(have 5 results) is:
1 2016 04 20 08:53:18
2 2016 04 20 08:53:18
I don't know why?
You probably just have an outdated version of pytz on the system returning five time zones (or perhaps on both systems). You can find the latest releases here. It's important to stay on top of time zone updates, as the various governments of the world change their time zones often.
Like most systems, pytz gets its data from the tz database. The five time zones for China were reduced to two in version 2014f (corresponding to pytz 2014.6). From the release notes:
China's five zones have been simplified to two, since the post-1970
differences in the other three seem to have been imaginary. The
zones Asia/Harbin, Asia/Chongqing, and Asia/Kashgar have been
removed; backwards-compatibility links still work, albeit with
different behaviors for time stamps before May 1980. Asia/Urumqi's
1980 transition to UTC+8 has been removed, so that it is now at
UTC+6 and not UTC+8. (Thanks to Luther Ma and to Alois Treindl;
Treindl sent helpful translations of two papers by Guo Qingsheng.)
Also, you may wish to read Wikipedia's Time in China article, which explains that the Asia/Urumqui entry is for "Ürümqi Time", which is used unofficially in some parts of the Xinjiang region. This zone is not recognized by the Chinese government, and is considered a politically charged issue. As such, many systems choose to omit the Urumqi time zone, despite it being in listed in the tz database.

64-bit CFCalendarComposeAbsoluteTime generated unexpected value

I used below codes to generate absolute time in a 64-bit app:
CFTimeZoneRef cftz = CFTimeZoneCopyDefault();
CFCalendarRef cfgd = CFCalendarCreateWithIdentifier(kCFAllocatorDefault, kCFGregorianCalendar);
CFCalendarSetTimeZone(cfgd, cftz);
CFAbsoluteTime at = 0.0;
CFCalendarComposeAbsoluteTime(cfgd,
&at,
"yMdHms",
year,
month,
day,
hour,
minute,
second);
Where year, month, day, hour, minute and second were:
2005, 4, 18, 12, 0, 0.0
But the generated absolute time was not as expected. It turned to 2005-04-19 13:17:27 PDT.
And it would go too far wrong if I added more control, for example, locale.
Any one suffered the same issue before? or know anything about this API?

How do I compute equinox/solstice moments?

What algorithms or formulas are available for computing the equinoxes and solstices? I found one of these a few years ago and implemented it, but the precision was not great: the time of day seemed to be assumed at 00:00, 06:00, 12:00, and 18:00 UTC depending on which equinox or solstice was computed. Wikipedia gives these computed out to the minute, so something more exact must be possible. Libraries for my favorite programming language also come out to those hardcoded times, so I assume they are using the same or a similar algorithm as the one I implemented.
I also once tried using a library that gave me the solar longitude and implementing a search routine to zero in on the exact moments of 0, 90, 180, and 270 degrees; this worked down to the second but did not agree with the times in Wikipedia, so I assume there was something wrong with this approach. I am, however, pleasantly surprised to discover that Maimonides (medieval Jewish scholar) proposed an algorithm using the exact same idea a millenium ago.
A great source for the (complex!) underlying formulas and algorithms is Astronomical Algorithms by Jean Meeus.
Using the PyMeeus implementation of those algorithms, and the code below, you can get the following values for the 2018 winter solstice (where "winter" refers to the northern hemisphere).
winter solstice for 2018 in Terrestrial Time is at:
(2018, 12, 21, 22, 23, 52.493725419044495)
winter solstice for 2018 in UTC, if last leap second was (2016, 12):
(2018, 12, 21, 22, 22, 43.30972542127711)
winter solstice for 2018 in local time, if last leap second was (2016, 12)
and local time offset is -7.00 hours:
(2018, 12, 21, 15, 22, 43.30973883232218)
i.e. 2018-12-21T15:22:43.309725-07:00
Of course, the answer is not accurate down to microseconds, but I also wanted to show how to do high-precision conversions with arrow.
Code:
from pymeeus.Sun import Sun
from pymeeus.Epoch import Epoch
year = 2018 # datetime.datetime.now().year
target="winter"
# Get terrestrial time of given solstice for given year
solstice_epoch = Sun.get_equinox_solstice(year, target=target)
print("%s solstice for %d in Terrestrial Time is at:\n %s" %
(target, year, solstice_epoch.get_full_date()))
print("%s solstice for %d in UTC, if last leap second was %s:\n %s" %
(target, year, Epoch.get_last_leap_second()[:2], solstice_epoch.get_full_date(utc=True)))
solstice_local = (solstice_epoch + Epoch.utc2local()/(24*60*60))
print("%s solstice for %d in local time, if last leap second was %s\n"
" and local time offset is %.2f hours:\n %s" %
(target, year, Epoch.get_last_leap_second()[:2],
Epoch.utc2local() / 3600., solstice_local.get_full_date(utc=True)))
Using the very cool more ISO and TZ aware module Arrow: better dates and times for Python, that can be printed more nicely:
import arrow
import math
slutc = solstice_epoch.get_full_date(utc=True)
frac, whole = math.modf(slutc[5])
print("i.e. %s" % arrow.get(*slutc[:5], int(whole), round(frac * 1e6)).to('local'))
I'm not sure if this is an accurate enough solution for you, but I found a NASA website that has some code snippets for calculating the vernal equinox as well as some other astronomical-type information. I've also found some references to a book called Astronomical Algorithms which may have the answers you need if the info somehow isn't available online.
I know you're looking for something that'll paste into an answer here, but I have to mention SPICE, a toolkit produced by NAIF at JPL, funded by NASA. It might be overkill for Farmer's Almanac stuff, but you mentioned interest in precision and this toolkit is routinely used in planetary science.
I have implemented Jean Meeus' (the author of the Astronomical Algorithms referenced above) equinox and solstice algorithm in C and Java, if you're interested.

Resources