In kernel estimator, we have to choose h parameter as a bandwidth of the kernel, I know that there are methods to choose the parameter h. Also, there are two extreme cases on choosing h, if we choose h to tend to zero this will lead to the nearest neighbor estimator, and the opposite if we choose h to tend to infinity the will lead to the naive estimator. My question is what is the theoretical justification of these two extremes and what is the reference(book/journal)?
Related
I have a set of N data points X with +/- labels for which I'd like to calculate the max-margin linear separator (aka classifier, hyperplane) or fail if no such linear separator exist.
I do not want to avoid overfitting in the context of this question, as I do so elsewhere. So no slack variables ; no cross-validation ; no limits on the number of support vectors ; just find max-margin separator or fail.
How to I use libsvm to do so? I believe you can't give c=0 in C-SVM and you can't give nu=1 in nu-svm.
Related question (which I think didn't provide an answer):
Which of the parameters in LibSVM is the slack variable?
In the case of C-SVM, you should use a linear kernel and a very large C value (or nu = 0.999... for nu-SVM). If you still have slacks with this setting, probably your data is not linearly separable.
Quick explanation: the C-SVM optimization function tries to find the hyperplane having maximum margin and lowest misclassification costs at the same time. The misclassification costs in the C-SVM formulation is defined by: distance from the misclassified point to its correct side of the hyperplane, multiplied by C. If you increase the C value (or nu value for nu-SVM), every misclassified point will be too costly and an hyperplane that separates the data perfectly will be preferable for the optimization function.
I'm reading the paper below and I have some trouble , understanding the concept of negative sampling.
http://arxiv.org/pdf/1402.3722v1.pdf
Can anyone help , please?
The idea of word2vec is to maximise the similarity (dot product) between the vectors for words which appear close together (in the context of each other) in text, and minimise the similarity of words that do not. In equation (3) of the paper you link to, ignore the exponentiation for a moment. You have
v_c . v_w
-------------------
sum_i(v_ci . v_w)
The numerator is basically the similarity between words c (the context) and w (the target) word. The denominator computes the similarity of all other contexts ci and the target word w. Maximising this ratio ensures words that appear closer together in text have more similar vectors than words that do not. However, computing this can be very slow, because there are many contexts ci. Negative sampling is one of the ways of addressing this problem- just select a couple of contexts ci at random. The end result is that if cat appears in the context of food, then the vector of food is more similar to the vector of cat (as measures by their dot product) than the vectors of several other randomly chosen words (e.g. democracy, greed, Freddy), instead of all other words in language. This makes word2vec much much faster to train.
Computing Softmax (Function to determine which words are similar to the current target word) is expensive since requires summing over all words in V (denominator), which is generally very large.
What can be done?
Different strategies have been proposed to approximate the softmax. These approaches can be grouped into softmax-based and sampling-based approaches. Softmax-based approaches are methods that keep the softmax layer intact, but modify its architecture to improve its efficiency (e.g hierarchical softmax). Sampling-based approaches on the other hand completely do away with the softmax layer and instead optimise some other loss function that approximates the softmax (They do this by approximating the normalization in the denominator of the softmax with some other loss that is cheap to compute like negative sampling).
The loss function in Word2vec is something like:
Which logarithm can decompose into:
With some mathematic and gradient formula (See more details at 6) it converted to:
As you see it converted to binary classification task (y=1 positive class, y=0 negative class). As we need labels to perform our binary classification task, we designate all context words c as true labels (y=1, positive sample), and k randomly selected from corpora as false labels (y=0, negative sample).
Look at the following paragraph. Assume our target word is "Word2vec". With window of 3, our context words are: The, widely, popular, algorithm, was, developed. These context words consider as positive labels. We also need some negative labels. We randomly pick some words from corpus (produce, software, Collobert, margin-based, probabilistic) and consider them as negative samples. This technique that we picked some randomly example from corpus is called negative sampling.
Reference :
(1) C. Dyer, "Notes on Noise Contrastive Estimation and Negative Sampling", 2014
(2) http://sebastianruder.com/word-embeddings-softmax/
I wrote an tutorial article about negative sampling here.
Why do we use negative sampling? -> to reduce computational cost
The cost function for vanilla Skip-Gram (SG) and Skip-Gram negative sampling (SGNS) looks like this:
Note that T is the number of all vocabs. It is equivalent to V. In the other words, T = V.
The probability distribution p(w_t+j|w_t) in SG is computed for all V vocabs in the corpus with:
V can easily exceed tens of thousand when training Skip-Gram model. The probability needs to be computed V times, making it computationally expensive. Furthermore, the normalization factor in the denominator requires extra V computations.
On the other hand, the probability distribution in SGNS is computed with:
c_pos is a word vector for positive word, and W_neg is word vectors for all K negative samples in the output weight matrix. With SGNS, the probability needs to be computed only K + 1 times, where K is typically between 5 ~ 20. Furthermore, no extra iterations are necessary to compute the normalization factor in the denominator.
With SGNS, only a fraction of weights are updated for each training sample, whereas SG updates all millions of weights for each training sample.
How does SGNS achieve this? -> by transforming multi-classification task into binary classification task.
With SGNS, word vectors are no longer learned by predicting context words of a center word. It learns to differentiate the actual context words (positive) from randomly drawn words (negative) from the noise distribution.
In real life, you don't usually observe regression with random words like Gangnam-Style, or pimples. The idea is that if the model can distinguish between the likely (positive) pairs vs unlikely (negative) pairs, good word vectors will be learned.
In the above figure, current positive word-context pair is (drilling, engineer). K=5 negative samples are randomly drawn from the noise distribution: minimized, primary, concerns, led, page. As the model iterates through the training samples, weights are optimized so that the probability for positive pair will output p(D=1|w,c_pos)≈1, and probability for negative pairs will output p(D=1|w,c_neg)≈0.
When using SVMlight or LIBSVM in order to classify phrases as positive or negative (Sentiment Analysis), is there a way to determine which are the most influential words that affected the algorithms decision? For example, finding that the word "good" helped determine a phrase as positive, etc.
If you use the linear kernel then yes - simply compute the weights vector:
w = SUM_i y_i alpha_i sv_i
Where:
sv - support vector
alpha - coefficient found with SVMlight
y - corresponding class (+1 or -1)
(in some implementations alpha's are already multiplied by y_i and so they are positive/negative)
Once you have w, which is of dimensions 1 x d where d is your data dimension (number of words in the bag of words/tfidf representation) simply select the dimensions with high absolute value (no matter positive or negative) in order to find the most important features (words).
If you use some kernel (like RBF) then the answer is no, there is no direct method of taking out the most important features, as the classification process is performed in completely different way.
As #lejlot mentioned, with linear kernel in SVM, one of the feature ranking strategies is based on the absolute values of weights in the model. Another simple and effective strategy is based on F-score. It considers each feature separately and therefore cannot reveal mutual information between features. You can also determine how important a feature is by removing that feature and observe the classification performance.
You can see this article for more details on feature ranking.
With other kernels in SVM, the feature ranking is not that straighforward, yet still feasible. You can construct an orthogonal set of basis vectors in the kernel space, and calculate the weights by kernel relief. Then the implicit feature ranking can be done based on the absolute value of weights. Finally the data is projected into the learned subspace.
I have read through a lot of papers and understand the basic concept of a support vector machine at a very high level. You give it a training input vector which has a set of features and bases on how the "optimization function" evaluates this input vector lets call it x, (lets say we're talking about text classification), the text associated with the input vector x is classified into one of two pre-defined classes, this is only in the case of binary classification.
So my first question is through this procedure described above, all the papers say first that this training input vector x is mapped to a higher (maybe infinite) dimensional space. So what does this mapping achieve or why is this required? Lets say the input vector x has 5 features so who decides which "higher dimension" x is going to be mapped to?
Second question is about the following optimization equation:
min 1/2 wi(transpose)*wi + C Σi = 1..n ξi
so I understand that w has something to do with the margins of the hyperplane from the support vectors in the graph and I know that C is some sort of a penalty but I dont' know what it is a penalty for. And also what is ξi representing in this case.
A simple explanation of the second question would be much appreciated as I have not had much luck understanding it by reading technical papers.
When they talk about mapping to a higher-dimensional space, they mean that the kernel accomplishes the same thing as mapping the points to a higher-dimensional space and then taking dot products there. SVMs are fundamentally a linear classifier, but if you use kernels, they're linear in a space that's different from the original data space.
To be concrete, let's talk about the kernel
K(x, y) = (xy + 1)^2 = (xy)^2 + 2xy + 1,
where x and y are each real numbers (one-dimensional). Note that
(x^2, sqrt(2) x, 1) • (y^2, sqrt(2) y, 1) = x^2 y^2 + 2 x y + 1
has the same value. So K(x, y) = phi(x) • phi(y), where phi(a) = (a^2, sqrt(2), 1), and doing an SVM with this kernel (the inhomogeneous polynomial kernel of degree 2) is the same as if you first mapped your 1d points into this 3d space and then did a linear kernel.
The popular Gaussian RBF kernel function is equivalent to mapping your points into an infinite-dimensional Hilbert space.
You're the one who decides what feature space it's mapped into, when you pick a kernel. You don't necessarily need to think about the explicit mapping when you do that, though, and it's important to note that the data is never actually transformed into that high-dimensional space explicitly - then infinite-dimensional points would be hard to represent. :)
The ξ_i are the "slack variables". Without them, SVMs would never be able to account for training sets that aren't linearly separable -- which most real-world datasets aren't. The ξ in some sense are the amount you need to push data points on the wrong side of the margin over to the correct side. C is a parameter that determines how much it costs you to increase the ξ (that's why it's multiplied there).
1) The higher dimension space happens through the kernel mechanism. However, when evaluating the test sample, the higher dimension space need not be explicitly computed. (Clearly this must be the case because we cannot represent infinite dimensions on a computer.) For instance, radial basis function kernels imply infinite dimensional spaces, yet we don't need to map into this infinite dimension space explicitly. We only need to compute, K(x_sv,x_test), where x_sv is one of the support vectors and x_test is the test sample.
The specific higher dimensional space is chosen by the training procedure and parameters, which choose a set of support vectors and their corresponding weights.
2) C is the weight associated with the cost of not being able to classify the training set perfectly. The optimization equation says to trade-off between the two undesirable cases of non-perfect classification and low margin. The ξi variables represent by how much we're unable to classify instance i of the training set, i.e., the training error of instance i.
See Chris Burges' tutorial on SVM's for about the most intuitive explanation you're going to get of this stuff anywhere (IMO).
All this time (specially in Netflix contest), I always come across this blog (or leaderboard forum) where they mention how by applying a simple SVD step on data helped them in reducing sparsity in data or in general improved the performance of their algorithm in hand.
I am trying to think (since long time) but I am not able to guess why is it so.
In general, the data in hand I get is very noisy (which is also the fun part of bigdata) and then I do know some basic feature scaling stuff like log-transformation stuff , mean normalization.
But how does something like SVD helps.
So lets say i have a huge matrix of user rating movies..and then in this matrix, I implement some version of recommendation system (say collaborative filtering):
1) Without SVD
2) With SVD
how does it helps
SVD is not used to normalize the data, but to get rid of redundant data, that is, for dimensionality reduction. For example, if you have two variables, one is humidity index and another one is probability of rain, then their correlation is so high, that the second one does not contribute with any additional information useful for a classification or regression task. The eigenvalues in SVD help you determine what variables are most informative, and which ones you can do without.
The way it works is simple. You perform SVD over your training data (call it matrix A), to obtain U, S and V*. Then set to zero all values of S less than a certain arbitrary threshold (e.g. 0.1), call this new matrix S'. Then obtain A' = US'V* and use A' as your new training data. Some of your features are now set to zero and can be removed, sometimes without any performance penalty (depending on your data and the threshold chosen). This is called k-truncated SVD.
SVD doesn't help you with sparsity though, only helps you when features are redundant. Two features can be both sparse and informative (relevant) for a prediction task, so you can't remove either one.
Using SVD, you go from n features to k features, where each one will be a linear combination of the original n. It's a dimensionality reduction step, just like feature selection is. When redundant features are present, though, a feature selection algorithm may lead to better classification performance than SVD depending on your data set (for example, maximum entropy feature selection). Weka comes with a bunch of them.
See: http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Dimensionality_Reduction/Singular_Value_Decomposition
https://stats.stackexchange.com/questions/33142/what-happens-when-you-apply-svd-to-a-collaborative-filtering-problem-what-is-th
The Singular Value Decomposition is often used to approximate a matrix X by a low rank matrix X_lr:
Compute the SVD X = U D V^T.
Form the matrix D' by keeping the k largest singular values and setting the others to zero.
Form the matrix X_lr by X_lr = U D' V^T.
The matrix X_lr is then the best approximation of rank k of the matrix X, for the Frobenius norm (the equivalent of the l2-norm for matrices). It is computationally efficient to use this representation, because if your matrix X is n by n and k << n, you can store its low rank approximation with only (2n + 1)k coefficients (by storing U, D' and V).
This was often used in matrix completion problems (such as collaborative filtering) because the true matrix of user ratings is assumed to be low rank (or well approximated by a low rank matrix). So, you wish to recover the true matrix by computing the best low rank approximation of your data matrix. However, there are now better ways to recover low rank matrices from noisy and missing observations, namely nuclear norm minimization. See for example the paper The power of convex relaxation: Near-optimal matrix completion by E. Candes and T. Tao.
(Note: the algorithms derived from this technique also store the SVD of the estimated matrix, but it is computed differently).
PCA or SVD, when used for dimensionality reduction, reduce the number of inputs. This, besides saving computational cost of learning and/or predicting, can sometimes produce more robust models that are not optimal in statistical sense, but have better performance in noisy conditions.
Mathematically, simpler models have less variance, i.e. they are less prone to overfitting. Underfitting, of-course, can be a problem too. This is known as bias-variance dilemma. Or, as said in plain words by Einstein: Things should be made as simple as possible, but not simpler.