What is the idiomatic way for an implementation to depend on a partial record type? - f#

My intent is to define a module with functions which can operate on all records types which comply with certain assumptions about the keys.
To illustrate, let us have the following code:
> type DBRow = { id: string ; createdAt: System.DateTime } ;;
type DBRow =
{id: string;
createdAt: System.DateTime;}
> let logCreationInfo row = printf "Record %s created at %s " row.id (row.createdAt.ToString()) ;;
val logCreationInfo : row:DBRow -> unit
I would like to change the above logCreationInfo to be able to operate on all records which have id: string and createdAt: System.DateTime (and maybe other things).
Coming from typescript's structural typing, I'd have expected this to be trivial, but I am exploring the possibility that there is a more idiomatic way to handle this in F#.
I had attempted to handle this using interfaces, but even if that could work, since F# supports only explicit interfaces, this will not be suitable for types I don't define myself.

You could use statically resolved type constraints.
let inline logCreationInfo (x : ^t) =
printfn "Record %s created at %s"
(^t : (member id : string) (x))
((^t : (member createdAt : System.DateTime) (x)).ToString())

F# largely uses nominative typing - this is a natural choice in its runtime environment, as this is what Common Type System specification prescribes. Adherence to that set of rules allows F# code to near-seamlessly interoperate with other .NET languages.
It's worth noting that this follows the same reasoning as to why TypeScript uses structural typing. Since that language builds up on top of dynamically typed JavaScript, it's more natural to express object relationships in terms of their structure rather than nominal types - which are a foreign concept in JS.
F# does have a "backdoor" for structural typing through already mentioned SRTPs, but I would suggest using it very sparingly. SRTPs are resolved and the code using them is inlined by the compiler, making for longer compilation times and reduced interoperability with other languages and the .NET platform in general (simply put, you can't refer to that code from other languages or using reflection API, because it's "compiled away").
Usually there are other solutions available. Interfaces were already mentioned, though the example used was a bit contrived - this is simpler:
type IDBRow =
abstract Id: string
abstract CreatedAt: System.DateTime
type Person =
{
id: string
name: string
age: int
createdAt: System.DateTime
}
interface IDBRow with
member this.Id = this.id
member this.CreatedAt = this.createdAt
let logCreationInfo (row: #IDBRow) =
printf "Record %s created at %s" row.Id (string row.CreatedAt)
let x = { id = "1"; name = "Bob"; age = 32; createdAt = DateTime.Now }
logCreationInfo x
Or using composition and a generic type to capture the generic part of what it means to be a DBRow:
type DBRow<'data> =
{
id: string
data: 'data
createdAt: System.DateTime
}
type Person =
{
name: string
age: int
}
let logCreationInfo (row: DBRow<_>) =
printf "Record %s created at %s" row.id (string row.createdAt)
let x = { id = "1"; data = { name = "Bob"; age = 32 }; createdAt = DateTime.Now }
logCreationInfo x

Here's a version with interfaces:
open System
type DBRow1 = {
id: string
createdAt: DateTime
}
type DBRow2 = {
id: string
createdAt: DateTime
address: string
}
/// The types are defined above without an interface
let row1 = {id = "Row1"; createdAt = DateTime.Now}
let row2 = {id = "Row2"; createdAt = DateTime.Now; address = "NYC"}
type IDBRow<'A> =
abstract member Data:(string * DateTime)
// Object expression implements the interface
let Data1 (x:DBRow1) = {
new IDBRow<_> with
member __.Data = (x.id, x.createdAt)
}
let Data2 (x: DBRow2) = {
new IDBRow<_> with
member __.Data = (x.id, x.createdAt)
}
//pass in both the object expression and the record
let getData (ifun: 'a -> IDBRow<'b>) xrec =
(ifun xrec).Data
// You could partially apply the functions: `getData1 = getData Data1`
getData Data1 row1 //("Row1", 2018/02/05 9:24:17)
getData Data2 row2 //("Row2", 2018/02/05 9:24:17)
You can certainly use an interface (an object expression in this case) to tack on another member, .Data, even if you don'T have access to the original type. You would still need to put together one object expression for each type though, so SRTP might be a more "elegant" solution.

Related

Strongly typed ids in F#?

I have two kinds of entity in my application: customers and products. They are each identified at a database level by a UUID.
In my F# code, this can be represented by System.Guid.
For readability, I added some types like this:
open System
type CustomerId = Guid
type ProductId = Guid
However, this does not prevent me from using a ProductId as a CustomerId and vice-versa.
I came up with a wrapper idea to prevent this:
open System
[<Struct>]
type ProductId =
{
Product : Guid
}
[<Struct>]
type CustomerId =
{
Customer : Guid
}
This makes initialization a little more verbose, and perhaps less intuitive:
let productId = { Product = Guid.NewGuid () }
But it adds type-safety:
// let customerId : CustomerId = productId // Type error
I was wondering what other approaches there are.
You can use single-case union types:
open System
[<Struct>]
type ProductId = ProductId of Guid
[<Struct>]
type CustomerId = CustomerId of Guid
let productId = ProductId (Guid.NewGuid())
Normally we add some convenient helper methods/properties directly to the types:
[<Struct>]
type ProductId = private ProductId of Guid with
static member Create () = ProductId (Guid.NewGuid())
member this.Value = let (ProductId i) = this in i
[<Struct>]
type CustomerId = private CustomerId of Guid with
static member Create () = CustomerId (Guid.NewGuid())
member this.Value = let (CustomerId i) = this in i
let productId = ProductId.Create ()
productId.Value |> printfn "%A"
Another approach, which is less common, but worth mentioning is to use so-called phantom types. The idea is that you will have a generic wrapper ID<'T> and then use different types for 'T to represent different types of IDs. Those types are never actually instantiated, which is why they're called phantom types.
[<Struct>]
type ID<'T> = ID of System.Guid
type CustomerID = interface end
type ProductID = interface end
Now you can create ID<CustomerID> and ID<ProductID> values to represent two kinds of IDs:
let newCustomerID () : ID<CustomerID> = ID(System.Guid.NewGuid())
let newProductID () : ID<ProductID> = ID(System.Guid.NewGuid())
The nice thing about this is that you can write functions that work with any ID easily:
let printID (ID g) = printfn "%s" (g.ToString())
For example, I can now create one customer ID, one product ID and print both, but I cannot do equality test on those IDs, because they're types do not match:
let ci = newCustomerID ()
let pi = newProductID ()
printID ci
printID pi
ci = pi // Type mismatch. Expecting a 'ID<CustomerID>' but given a 'ID<ProductID>'
This is a neat trick, but it is a bit more complicated than just using new type for each ID. In particular, you will likely need more type annotations in various places to make this work and the type errors might be less clear, especially when there is generic code involved. However, it's worth mentioning this as an alternative.

How to make a record implement an interface?

If I have an interface:
type IData =
abstract member firstName: string
abstract member lastName: string
How do I define a record type that complies with this interface.
I tried something like below:
> type Data = { firstName: string; lastName: string } interface IData ;;
Snippet.js(43,63): error FS0366: No implementation was given for 'abstract member IData.firstName : string'. Note that all interface members must be implemented
and listed under an appropriate 'interface' declaration, e.g. 'interface ... with member ...'.
From the official reference for Records:
Record fields differ from classes in that they are automatically exposed as properties
My first question is: If properties are "automatically exposed" then why do I need to "do something" to implement them.
Since the error message askes me to provide an implementation for the interface, I tried the following:
> type Data = { firstName: string; lastName: string; } interface IData with
- member this.firstName with get () = this.firstName
- member this.lastName with get () = this.lastName
type Data =
{firstName: string;
lastName: string;}
with
interface IData
end
So far so good, however now when I try to use this, I run into issues:
> let d: IData = { firstName = "john"; lastName = "doe" } ;;
error FS0001: This expression was expected to have type
'IData'
but here has type
'Data'
Another Attempt:
> let d = { firstName = "john"; lastName = "doe" }
- ;;
val d : Data = {firstName = "john";
lastName = "doe";}
> let d2: IData = d ;;
C:\Users\loref\Workspace\source-nly10r\Untitled-1(25,17): error FS0001: This expression was expected to have type
'IData'
but here has type
'Data'
So, my second question is that if Data implements IData then why can't I assign a value of Data type to a variable of IData type ?
As pointed by Gustavo, implicit interface implementation is being discussed by F# implementers, and is not currently available.
Wrt. my second question, explicit casting is required:
> let d2: IData = d :> IData ;;
val d2 : IData = {firstName = "john";
lastName = "doe";}

How to receive a type that extends an interface without losing the original type

I have just started using F# and my brain is broken trying to figure out how to work with its types without having to resort to an OO type of programming.
Here is my situation I basically want to create a method where I provide the type and the Id and it returns to me the object on the database.
So basically this is what I get so far.
let client = MongoClient()
let database = client.GetDatabase("testdb")
let lowerCase (str : string) =
str.ToLower()
let nameOf (classType: Type) =
classType.Name
let nameTypeOf<'a> =
nameOf typeof<'a>
let getCollection<'a> =
let collectionName = nameTypeOf<'a> |> lowerCase
database.GetCollection<'a> collectionName
let dbSelect<'a> id =
let collection = getCollection<'a>
collection.Find(fun(x) -> x.Id = id).First()
So my problem is with the dbSelect, obviously it does not compile since x is generic, basically I wanted to create an interface with the Id and all my objects interface with it.
I do know how to do it using classes and inheritances, but I am avoiding having to use instanced classes outside interop with c# libraries. What would be the best functional way to do it, if there is any.
This is what I was eexpecting to call it with
type IDbObject =
abstract Id: string
type Item =
{
Id: string
Name: string
}
interface IDbObject with
member x.Id = x.Id
let item =
selectDb<Item> "5993592a35ce962b80da1e22"
Any help would be appreciated.
And if anyone want to point out how crappy my code is, any feedback is really appreciated
I don't think the solution here is much different from what you'd have in C#. You can constrain the generic type to use the interface members, getting something roughly like this:
let getCollection<'a when 'a :> IDbObject> () =
let collectionName = nameTypeOf<'a> |> lowerCase
database.GetCollection<'a> collectionName
let dbSelect<'a when 'a :> IDbObject> id =
let collection = getCollection<'a>()
collection.Find(fun (x : 'a) -> x.Id = id).First()
The type of dbSelect should be inferred to be string -> #IDbObject, and be coerced to string -> 'a at the call site.

Record variations in F#

I'd like some way to define related records. For example,
type Thing = { field1: string; field2: float }
type ThingRecord = { field1: string; field2: float; id: int; created: DateTime }
or
type UserProfile = { username: string; name: string; address: string }
type NewUserReq = { username: string; name: string; address: string; password: string }
type UserRecord = { username: string; name: string; address: string; encryptedPwd: string; salt: string }
along with a way to convert from one to the other, without needing to write so much boilerplate. Even the first example in full would be:
type Thing =
{ field1: string
field2: float }
with
member this.toThingRecord(id, created) =
{ field1 = this.field1
field2 = this.field2
id = id
created = created } : ThingRecord
and ThingRecord =
{ field1: string
field2: float
id: int
created: DateTime }
with
member this.toThing() =
{ field1 = this.field1
field2 = this.field2 } : Thing
As you get up to field10 etc, it gets to be a liability.
I currently do this in an unsafe (and slow) manner using reflection.
I added a request for with syntax to be extended to record definitions on uservoice, which would fill this need.
But is there perhaps an typesafe way to do this already? Maybe with type providers?
Yes, that's a chink in F#'s otherwise shiny armor. I don't feel there's a universal solution there for easily inheriting or extending a record. No doubt there is an appetite for one - I've counted over a dozen uservoice submissions advocating improvements along these lines - here are a few leading ones, feel free to vote up: 1, 2, 3, 4, 5.
For sure, there are things you can do to work around the problem, and depending on your scenario they might work great for you. But ultimately - they're workarounds and there's something you have to sacrifice:
Speed and type safety when using reflection,
Brevity when you go the type safe way and have full-fledged records with conversion functions between them,
All the syntactic and semantic goodness that records give you for free when you decide to fall back to plain .NET classes and inheritance.
Type providers won't cut it because they're not really a good tool for metaprogramming. That's not what they were designed for. If you try to use them that way, you're bound to hit some limitation.
For one, you can only provide types based on external information. This means that while you could have a type provider that would pull in types from a .NET assembly via reflection and provide some derived types based on that, you can't "introspect" into the assembly you're building. So no way of deriving from a type defined earlier in the same assembly.
I guess you could work around that by structuring your projects around the type provider, but that sounds clunky. And even then, you can't provide record types anyway yet, so best you could do are plain .NET classes.
For a more specific use case of providing some kind of ORM mapping for a database - I imagine you could use type providers just fine. Just not as a generic metaprogramming facility.
Why don't you make them more nested, like the following?
type Thing = { Field1: string; Field2: float }
type ThingRecord = { Thing : Thing; Id: int; Created: DateTime }
or
type UserProfile = { Username: string; Name: string; Address: string }
type NewUserReq = { UserProfile: UserProfile; Password: string }
type UserRecord = { UserProfile: UserProfile; EncryptedPwd: string; Salt: string }
Conversion functions are trivial:
let toThingRecord id created thing = { Thing = thing; Id = id; Created = created }
let toThing thingRecord = thingRecord.Thing
Usage:
> let tr = { Field1 = "Foo"; Field2 = 42. } |> toThingRecord 1337 (DateTime (2016, 6, 24));;
val tr : ThingRecord = {Thing = {Field1 = "Foo";
Field2 = 42.0;};
Id = 1337;
Created = 24.06.2016 00:00:00;}
> tr |> toThing;;
val it : Thing = {Field1 = "Foo";
Field2 = 42.0;}

Using NoRM to access MongoDB from F#

Testing out NoRM https://github.com/atheken/NoRM from F# and trying to find a nice way to use it. Here is the basic C#:
class products
{
public ObjectId _id { get; set; }
public string name { get; set; }
}
using (var c = Mongo.Create("mongodb://127.0.0.1:27017/test"))
{
var col = c.GetCollection<products>();
var res = col.Find();
Console.WriteLine(res.Count().ToString());
}
This works OK but here is how I access it from F#:
type products() =
inherit System.Object()
let mutable id = new ObjectId()
let mutable _name = ""
member x._id with get() = id and set(v) = id <- v
member x.name with get() = _name and set(v) = _name <- v
Is there an easier way to create a class or type to pass to a generic method?
Here is how it is called:
use db = Mongo.Create("mongodb://127.0.0.1:27017/test")
let col = db.GetCollection<products>()
let count = col.Find() |> Seq.length
printfn "%d" count
Have you tried a record type?
type products = {
mutable _id : ObjectId
mutable name : string
}
I don't know if it works, but records are often good when you just need a class that is basically 'a set of fields'.
Just out of curiosity, you can try adding a parameter-less constructor to a record. This is definitely a hack - in fact, it is using a bug in the F# compiler - but it may work:
type Products =
{ mutable _id : ObjectId
mutable name : string }
// Horrible hack: Add member that looks like constructor
member x.``.ctor``() = ()
The member declaration adds a member with a special .NET name that is used for constructors, so .NET thinks it is a constructor. I'd be very careful about using this, but it may work in your scenario, because the member appears as a constructor via Reflection.
If this is the only way to get succinct type declaration that works with libraries like MongoDB, then it will hopefuly motivate the F# team to solve the problem in the future version of the language (e.g. I could easily imagine some special attribute that would force F# compiler to add parameterless constructor).
Here is a pretty light way to define a class close to your C# definition: it has a default constructor but uses public fields instead of getters and setters which might be a problem (I don't know).
type products =
val mutable _id: ObjectId
val mutable name: string
new() = {_id = ObjectId() ; name = ""}
or, if you can use default values for your fields (in this case, all null):
type products() =
[<DefaultValue>] val mutable _id: ObjectId
[<DefaultValue>] val mutable name: string

Resources