ML models with huge number of parameters will tend to overfit (since they have a large variance). In my opinion, word2vec is one such models. One of the ways to reduce the model variance is to apply a regularization technique, which is very common thing for the other embedding models, such as matrix factorization. However, the basic version of word2vec doesn't have any regularization part. Is there a reason for this?
That's an interesting question.
I'd say that overfitting in Word2Vec doesn't make a lot of sense, because the goal of word embeddings to match the word occurrence distribution as exactly as possible. Word2Vec is not designed to learn anything outside of the training vocabulary, i.e., generalize, but to approximate the one distribution defined by the text corpus. In this sense, Word2Vec is actually trying to fit exactly, so it can't over-fit.
If you had a small vocabulary, it'd be possible to compute the co-occurrence matrix and find the exact global minimum for the embeddings (of a given size), i.e., get the perfect fit and that would define the best contextual word model for this fixed language.
Related
I've seen some posts say that the average of the word vectors perform better in some tasks than the doc vectors learned through PV_DBOW. What is the relationship between the document's vector and the average/sum of its words' vectors? Can we say that vector d
is approximately equal to the average or sum of its word vectors?
Thanks!
No. The PV-DBOW vector is calculated by a different process, based on how well the PV-DBOW-vector can be incrementally nudged to predict each word in the text in turn, via a concurrently-trained shallow neural network.
But, a simple average-of-word-vectors often works fairly well as a summary vector for a text.
So, let's assume both the PV-DBOW vector and the simple-average-vector are the same dimensionality. Since they're bootstrapped from exactly the same inputs (the same list of words), and the neural-network isn't significantly more sophisticated (in its internal state) than a good set of word-vectors, the performance of the vectors on downstream evaluations may not be very different.
For example, if the training data for the PV-DBOW model is meager, or meta-parameters not well optimized, but the word-vectors used for the average-vector are very well-fit to your domain, maybe the simple-average-vector would work better for some downstream task. On the other hand, a PV-DBOW model trained on sufficient domain text could provide vectors that outperform a simple-average based on word-vectors from another domain.
Note that FastText's classification mode (and similar modes in Facebook's StarSpace) actually optimizes word-vectors to work as parts of a simple-average-vector used to predict known text-classes. So if your end-goal is to have a text-vector for classification, and you have a good training dataset with known-labels, those techniques are worth considering as well.
I have a set of labeled training data, and I am training a ML algorithm to predict the label. However, some of my data points are more important than others. Or, analogously, these points have less uncertainty than the others.
Is there a general method to include an importance-representing weight to each training point in the model? Are there instead some specific models which are capable of this while others are not?
I can imagine duplicating these points (and perhaps smearing their features slightly to avoid exact duplicates), or downsampling the less important points. Is there a more elegant way to approach this problem?
Scikit-learn allows you to pass an array of sample weights while fitting the model. Vowpal Wabbit (an online ML library) also has this option.
I want to find the opinion of a sentence either positive or negative. For example talk about only one sentence.
The play was awesome
If change it to vector form
[0,0,0,0]
After searching through the Bag of words
bad
naughty
awesome
The vector form becomes
[0,0,0,1]
Same for other sentences. Now I want to pass it to the machine learning algorithm for training it. How can I train the network using these multiple vectors? (for finding the opinion of unseen sentences) Obviously not! Because the input is fix in neural network. Is there any way? The above procedure is just my thinking. Kindly correct me if I am wrong. Thanks in advance.
Since your intuitive input format is "Sentence". Which is, indeed, a string of tokens with arbitrary length. Abstracting sentences as token series is not a good choice for many existing algorithms only works on determined format of inputs.
Hence, I suggest try using tokenizer on your entire training set. This will give you vectors of length of the dictionary, which is fixed for given training set.
Because when the length of sentences vary drastically, then size of the dictionary always keeps stable.
Then you can apply Neural Networks(or other algorithms) to the tokenized vectors.
However, vectors generated by tokenizer is extremely sparse because you only work on sentences rather than articles.
You can try LDA (supervised, not PCA), to reduce the dimension as well as amplify the difference.
That will keep the essential information of your training data as well as express your data at fixed size, while this "size" is not too large.
By the way, you may not have to label each word by its attitude since the opinion of a sentence also depends on other kind of words.
Simple arithmetics on number of opinion-expressing words many leave your model highly biased. Better label the sentences and leave the rest job to classifiers.
For the confusions
PCA and LDA are Dimensional Reduction techniques.
difference
Let's assume each tuple of sample is denoted as x (1-by-p vector).
p is too large, we don't like that.
Let's find a matrix A(p-by-k) in which k is pretty small.
So we get reduced_x = x*A, and most importantly, reduced_x must
be able to represent x's characters.
Given labeled data, LDA can provide proper A that can maximize
distance between reduced_x of different classes, and also minimize
the distance within identical classes.
In simple words: compress data, keep information.
When you've got
reduced_x, you can define training data: (reduced_x|y) where y is
0 or 1.
I'm working on a problem that involves classifying a large database of texts. The texts are very short (think 3-8 words each) and there are 10-12 categories into which I wish to sort them. For the features, I'm simply using the tf–idf frequency of each word. Thus, the number of features is roughly equal to the number of words that appear overall in the texts (I'm removing stop words and some others).
In trying to come up with a model to use, I've had the following two ideas:
Naive Bayes (likely the sklearn multinomial Naive Bayes implementation)
Support vector machine (with stochastic gradient descent used in training, also an sklearn implementation)
I have built both models, and am currently comparing the results.
What are the theoretical pros and cons to each model? Why might one of these be better for this type of problem? I'm new to machine learning, so what I'd like to understand is why one might do better.
Many thanks!
The biggest difference between the models you're building from a "features" point of view is that Naive Bayes treats them as independent, whereas SVM looks at the interactions between them to a certain degree, as long as you're using a non-linear kernel (Gaussian, rbf, poly etc.). So if you have interactions, and, given your problem, you most likely do, an SVM will be better at capturing those, hence better at the classification task you want.
The consensus for ML researchers and practitioners is that in almost all cases, the SVM is better than the Naive Bayes.
From a theoretical point of view, it is a little bit hard to compare the two methods. One is probabilistic in nature, while the second one is geometric. However, it's quite easy to come up with a function where one has dependencies between variables which are not captured by Naive Bayes (y(a,b) = ab), so we know it isn't an universal approximator. SVMs with the proper choice of Kernel are (as are 2/3 layer neural networks) though, so from that point of view, the theory matches the practice.
But in the end it comes down to performance on your problem - you basically want to choose the simplest method which will give good enough results for your problem and have a good enough performance. Spam detection has been famously solvable by just Naive Bayes, for example. Face recognition in images by a similar method enhanced with boosting etc.
Support Vector Machine (SVM) is better at full-length content.
Multinomial Naive Bayes (MNB) is better at snippets.
MNB is stronger for snippets than for longer documents. While (Ng and Jordan,
2002) showed that NB is better than SVM/logistic
regression (LR) with few training cases, MNB is also better with short documents. SVM usually beats NB when it has more than 30–50 training cases, we show that MNB is still better on snippets even with relatively large training sets (9k cases).
Inshort, NBSVM seems to be an appropriate and very strong baseline for sophisticated classification text data.
Source Code: https://github.com/prakhar-agarwal/Naive-Bayes-SVM
Reference: http://nlp.stanford.edu/pubs/sidaw12_simple_sentiment.pdf
Cite: Wang, Sida, and Christopher D. Manning. "Baselines and bigrams:
Simple, good sentiment and topic classification." Proceedings of the
50th Annual Meeting of the Association for Computational Linguistics:
Short Papers-Volume 2. Association for Computational Linguistics,
2012.
I am using a Naive Bayes Classifier to categorize several thousand documents into 30 different categories. I have implemented a Naive Bayes Classifier, and with some feature selection (mostly filtering useless words), I've gotten about a 30% test accuracy, with 45% training accuracy. This is significantly better than random, but I want it to be better.
I've tried implementing AdaBoost with NB, but it does not appear to give appreciably better results (the literature seems split on this, some papers say AdaBoost with NB doesn't give better results, others do). Do you know of any other extensions to NB that may possibly give better accuracy?
In my experience, properly trained Naive Bayes classifiers are usually astonishingly accurate (and very fast to train--noticeably faster than any classifier-builder i have everused).
so when you want to improve classifier prediction, you can look in several places:
tune your classifier (adjusting the classifier's tunable paramaters);
apply some sort of classifier combination technique (eg,
ensembling, boosting, bagging); or you can
look at the data fed to the classifier--either add more data,
improve your basic parsing, or refine the features you select from
the data.
w/r/t naive Bayesian classifiers, parameter tuning is limited; i recommend to focus on your data--ie, the quality of your pre-processing and the feature selection.
I. Data Parsing (pre-processing)
i assume your raw data is something like a string of raw text for each data point, which by a series of processing steps you transform each string into a structured vector (1D array) for each data point such that each offset corresponds to one feature (usually a word) and the value in that offset corresponds to frequency.
stemming: either manually or by using a stemming library? the popular open-source ones are Porter, Lancaster, and Snowball. So for
instance, if you have the terms programmer, program, progamming,
programmed in a given data point, a stemmer will reduce them to a
single stem (probably program) so your term vector for that data
point will have a value of 4 for the feature program, which is
probably what you want.
synonym finding: same idea as stemming--fold related words into a single word; so a synonym finder can identify developer, programmer,
coder, and software engineer and roll them into a single term
neutral words: words with similar frequencies across classes make poor features
II. Feature Selection
consider a prototypical use case for NBCs: filtering spam; you can quickly see how it fails and just as quickly you can see how to improve it. For instance, above-average spam filters have nuanced features like: frequency of words in all caps, frequency of words in title, and the occurrence of exclamation point in the title. In addition, the best features are often not single words but e.g., pairs of words, or larger word groups.
III. Specific Classifier Optimizations
Instead of 30 classes use a 'one-against-many' scheme--in other words, you begin with a two-class classifier (Class A and 'all else') then the results in the 'all else' class are returned to the algorithm for classification into Class B and 'all else', etc.
The Fisher Method (probably the most common way to optimize a Naive Bayes classifier.) To me,
i think of Fisher as normalizing (more correctly, standardizing) the input probabilities An NBC uses the feature probabilities to construct a 'whole-document' probability. The Fisher Method calculates the probability of a category for each feature of the document then combines these feature probabilities and compares that combined probability with the probability of a random set of features.
I would suggest using a SGDClassifier as in this and tune it in terms of regularization strength.
Also try to tune the formula in TFIDF you're using by tuning the parameters of TFIFVectorizer.
I usually see that for text classification problems SVM or Logistic Regressioin when trained one-versus-all outperforms NB. As you can see in this nice article by Stanford people for longer documents SVM outperforms NB. The code for the paper which uses a combination of SVM and NB (NBSVM) is here.
Second, tune your TFIDF formula (e.g. sublinear tf, smooth_idf).
Normalize your samples with l2 or l1 normalization (default in Tfidfvectorization) because it compensates for different document lengths.
Multilayer Perceptron, usually gets better results than NB or SVM because of the non-linearity introduced which is inherent to many text classification problems. I have implemented a highly parallel one using Theano/Lasagne which is easy to use and downloadable here.
Try to tune your l1/l2/elasticnet regularization. It makes a huge difference in SGDClassifier/SVM/Logistic Regression.
Try to use n-grams which is configurable in tfidfvectorizer.
If your documents have structure (e.g. have titles) consider using different features for different parts. For example add title_word1 to your document if word1 happens in the title of the document.
Consider using the length of the document as a feature (e.g. number of words or characters).
Consider using meta information about the document (e.g. time of creation, author name, url of the document, etc.).
Recently Facebook published their FastText classification code which performs very well across many tasks, be sure to try it.
Using Laplacian Correction along with AdaBoost.
In AdaBoost, first a weight is assigned to each data tuple in the training dataset. The intial weights are set using the init_weights method, which initializes each weight to be 1/d, where d is the size of the training data set.
Then, a generate_classifiers method is called, which runs k times, creating k instances of the Naïve Bayes classifier. These classifiers are then weighted, and the test data is run on each classifier. The sum of the weighted "votes" of the classifiers constitutes the final classification.
Improves Naive Bayes classifier for general cases
Take the logarithm of your probabilities as input features
We change the probability space to log probability space since we calculate the probability by multiplying probabilities and the result will be very small. when we change to log probability features, we can tackle the under-runs problem.
Remove correlated features.
Naive Byes works based on the assumption of independence when we have a correlation between features which means one feature depends on others then our assumption will fail.
More about correlation can be found here
Work with enough data not the huge data
naive Bayes require less data than logistic regression since it only needs data to understand the probabilistic relationship of each attribute in isolation with the output variable, not the interactions.
Check zero frequency error
If the test data set has zero frequency issue, apply smoothing techniques “Laplace Correction” to predict the class of test data set.
More than this is well described in the following posts
Please refer below posts.
machinelearningmastery site post
Analyticvidhya site post
keeping the n size small also make NB to give high accuracy result. and at the core, as the n size increase its accuracy degrade,
Select features which have less correlation between them. And try using different combination of features at a time.