Total weight of inputs to a neuron in ANN - machine-learning

In ANN, we know that to make it "learn", we need to adjust the weights of the inputs to a particular neuron.
total_input=summation(w(j,i).a(j))
During adjustment, some weights are to be reduced while others to be increased.
Is the total weight of all j inputs to the i-th neuron should be 1?

There's absolutely no reason for the weights in the linear layer (a.k.a. dense or fully-connected layer) to sum up to anything specific, such as 1.0. They are usually initialized with small random numbers (so initial sum is unlikely to be 1.0) and then get tweaked somehow (not completely independently, but at least differently).
If the neural network doesn't use any regularization, it's often possible to train the network to large weight values, much larger than 1.0 (see also this question).
There are particular cases, when an analogous condition is true, for example softmax layer, which mathematically guarantees that the sum of outputs is 1.0. But the linear layer doesn't guarantee anything like that.

Related

Data normalization Convolutional Autoencoders

Iam a little bit confused about how to normalize/standarize image pixel values before training a convolutional autoencoder. The goal is to use the autoencoder for denoising, meaning that my traning images consists of noisy images and the original non-noisy images used as ground truth.
To my knowledge there are to options to pre-process the images:
- normalization
- standarization (z-score)
When normalizing using the MinMax approach (scaling between 0-1) the network works fine, but my question here is:
- When using the min max values of the training set for scaling, should I use the min/max values of the noisy images or of the ground truth images?
The second thing I observed when training my autoencoder:
- Using z-score standarization, the loss decreases for the two first epochs, after that it stops at about 0.030 and stays there (it gets stuck). Why is that? With normalization the loss decreases much more.
Thanks in advance,
cheers,
Mike
[Note: This answer is a compilation of the comments above, for the record]
MinMax is really sensitive to outliers and to some types of noise, so it shouldn't be used it in a denoising application. You can use quantiles 5% and 95% instead, or use z-score (for which ready-made implementations are more common).
For more realistic training, normalization should be performed on the noisy images.
Because the last layer uses sigmoid activation (info from your comments), the network's outputs will be forced between 0 and 1. Hence it is not suited for an autoencoder on z-score-transformed images (because target intensities can take arbitrary positive or negative values). The identity activation (called linear in Keras) is the right choice in this case.
Note however that this remark on activation only concerns the output layer, any activation function can be used in the hidden layers. Rationale: negative values in the output can be obtained through negative weights multiplying the ReLU output of hidden layers.

What is compared when a CNN learns a set of features during backpropagation?

I am relatively new the subject and have been doing loads of reading. What I am particularly confused about is how a CNN learns its filters for a particular labeled feature in a training data set.
Is the cost calculated by which outputs should or shouldn't be active on a pixel by pixel basis? And if that is the case, how does mapping the activations to the labeled data work after having down sampled?
I apologize for any poor assumptions or general misunderstandings. Again, I am new to this field and would appreciate all feedback.
I'll break this up into a few small pieces.
Cost calculation -- cost / error / loss depends only on comparing the final prediction (the last layer's output) to the label (ground truth). This serves as a metric of how right or wrong the prediction is.
Inter-layer structure -- Each input to the prediction is an output of the prior layer. This output has a value; the link between the two has a weight.
Back-prop -- Each weight gets adjusted in proportion to the error comparison and its weight. A connection that contributed to a correct prediction gets rewarded: its weight is increased in magnitude. Conversely, a connection that pushed for a wrong prediction gets reduced.
Pixel-level control -- To clarify the terminology ... traditionally, each kernel is a square matrix of float values, each of which is called a "pixel". The pixels are trained individually. However, that training comes from sliding a smaller filter (also square) across the kernel, performing a dot-product of the window with the corresponding square sub-matrix of the kernel. The output of that dot-product is the value of a single pixel in the next layer.
When the strength of pixel in layer N is increased, this effectively increases the influence of the filter in layer N-1 providing that input. That filter's pixels are, in turn, tuned by the inputs from layer N-2.

Neural Network with Input - Relu - SoftMax - Cross Entropy Weights and Activations grow unbounded

I have implemented a neural network with 3 layers Input to Hidden Layer with 30 neurons(Relu Activation) to Softmax Output layer. I am using the cross entropy cost function. No outside libraries are being used. This is working on the NMIST dataset so 784 input neurons and 10 output neurons.
I have got about 96% accuracy with hyperbolic tangent as my hidden layer activation.
When I try to switch to relu activation my activations grow very fast which cause my weights grow unbounded as well until it blows up!
Is this a common problem to have when using relu activation?
I have tried L2 Regularization with minimal success. I end up having to set the learning rate lower by a factor of ten compared to the tanh activation and I have tried adjusting the weight decay rate accordingly and still the best accuracy I have gotten is about 90%. The rate of weight decay is still outpaced in the end by the updating of certain weights in the network which lead to an explosion.
It seems everyone is just replacing their activation functions with relu and they experience better results, so I keep looking for bugs and validating my implementation.
Is there more that goes into using relu as an activation function? Maybe I have problems in my implemenation, can someone validate accuracy with the same neural net structure?
as you can see the Relu function is unbounded on positive values, thus creating the weights to grow
in fact, that's why hyperbolic tangent and alike function are being used in those cases, to bound the output value between a certain range (-1 to 1 or 0 to 1 in most cases)
there is another approach to deal with this phenomenon called weights decay
the basic motivation is to get a more generalised model (avoid overfitting) and make sure the weights won't blow up you use a regulation value depending on the weight itself when update them
meaning that bigger weights get bigger penalty
you can farther read about it here

Is there any benefit to having linear activation functions at the last layer vs an activation function like tanh?

I understand this decision depends on the task, but let me explain.
I'm designing a model that predicts steering angles from a given dashboard video frame using a convolutional neural network with dense layers at end. In my final dense layer, I only have a single unit that predicts a steering angle.
My question here is, for my task would either option below show a boost in performance?
a. Get ground truth steering angles, convert to radians, and squash them using tanh so they are between -1 and 1. In the final dense layer of my network, use a tanh activation function.
b. Get ground truth steering angles. These raw angles are between -420 and 420 degrees. In the final layer, use a linear activation.
I'm trying to think about it logically, where in option A the loss will likely be much smaller since the network is dealing with much smaller numbers. This would lead to smaller changes in weights.
Let me know your thoughts!
There are two types of variables in neural networks: weights and biases (mostly, there are additional variables, e.g. the moving mean and moving variance required for batchnorm). They behave a bit differently, for instance biases are not penalized by a regularizer as a result they don't tend to get small. So an assumption that the network is dealing only with small numbers is not accurate.
Still, biases need to be learned, and as can be seen from ResNet performance, it's easier to learn smaller values. In this sense, I'd rather pick [-1, 1] target range over [-420, 420]. But tanh is probably not an optimal activation function:
With tahn (just like with sigmoid), a saturated neuron kills the gradient during backprop. Choosing tahn with no specific reason is likely to hurt your training.
Forward and backward passes with tahn need to compute exp, which is also relatively expensive.
My option would be (at least initially, until some other variant proves to work better) to squeeze the ground truth values and have no activation at all (I think that's what you mean by a linear activation): let the network learn [-1, 1] range by itself.
In general, if you have any activation functions in the hidden layers, ReLu has proven to work better than sigmoid, though other modern functions have been proposed recently, e.g. leaky ReLu, PRelu, ELU, etc. You might try any of those.

How to fit a classifier with high accuracy on the training set with low features?

I have input (r,c) in range (0, 1] as the coordinate of a pixel of an image and its color 1 or 2 only.
I have about 6,400 pixels.
My attempt of fitting X=(r,c) and y=color was a failure the accuracy won't go higher than 70%.
Here's the image:
The first is the actual image, the 2nd is the image I use to train on, it has only 2 colors. The last is the image that the neural network generated with about 500 weights training with 50 iterations. Input Layer is 2, one hidden layer of size 100, and the output layer is 2. (for binary classification like this, I may need only one output layer but I am just preparing for multi-class classification)
The classifier failed to fit the training set, why is that? I tried generating high polynomial terms of those 2 features but it doesn't help. I tried using Gaussian kernel and random 20-100 landmarks on the picture to add more features, also got similar output. I tried using logistic regressions, doesn't help.
Please help me increase the accuracy.
Here's the input:input.txt (you can load it into Octave the variable is coordinate (r,c features) and idx (color)
You can try plotting it first to make sure that you understand the input then try training on it and tell me if you get better result.
Your problem is hard to model. You are trying to fit function from R^2 to R, which has lots of complexity - lots of "spikes", lots of discontinuous regions (pixels that are completely separated from the rest). This is not an easy problem, and not usefull one.. In order to overfit your network to such setting you will need plenty of hidden units. Thus, what are the options to do so?
General things that are missing in the question, and are important
Your output variable should be {0, 1} if you are fitting your network through cross entropy cost (log likelihood), which you should use for classification.
50 iteraions (if you are talking about some mini-batch iteraions) is orders of magnitude to small, unless you mean 50 epochs (iterations over whole training set).
Actual things, that will probably need to be done (at least one of the below):
I assume that you are using ReLU activations (or Tanh, hard to say looking at the output) - you can instead use RBF activations, and increase number of hidden neurons to ~5000,
If you do not want to go with RBFs, then you will need 1-2 additional hidden layers to fit function of this complexity. Try architecture of type 100-100-100 instaed.
If the above fails - increase number of hidden units, that's all you need - enough capacity.
In general: neural networks are not designed for working with low dimensional datasets. This is nice example from the web, that you can learn pix-pos to color mapping, but it is completely artificial and seems to actually harm people intuitions.

Resources