Using Google ML Engine with BigQuery? - machine-learning

I'm currently designing a data warehouse in BigQuery. I'm planning to store user data like past purchases or abandoned carts.
This seems to be perfect to manually analyze trends and to get insights. But what if I want to leverage Machine Learning, e.g. to suggest products to a group of users?
I have looked into Google ML Engine and TensorFlow, and it seems like the TensorFlow model would need to query BigQuery first. In some scenarios, this could mean that TensorFlow would need to query all or most of the data that is stored in BigQuery.
This feels a bit off, so I'm wondering if this is really how things are supposed to happen. Otherwise, I assume that my ML model would have to work with stale data?

So I would agree with you, using BigQuery as a data warehouse for your ML is expensive. It would be cheaper and much more efficient to use Google Cloud Storage to store all the data you wish to process. Once everything is processed and generated, you may then wish to push that data to BigQuery push that data to another source like Spanner or even Cloud Storage.
That being said Google has now created a beta product BigQuery ML. This now allows users to create and execute machine learning models in BigQuery via the use of SQL queries. I believe it uses python and tensorflow under the hood, but I believe it would be the best solution given that you have a light weight ML load.
Since it is still in beta as of now, I don't know well it's performance compares to Google ML engine and tensorflow.

Depending on what kind of model you want to train and how you want to server the model you can do one the following options:
You can export your data to Google Cloud Storage as CSV and then read the files in Cloud ML Engine. This will let you use the power of Tensorflow and you can then use Cloud ML Engine's serving system to send traffic to your model.
On the downside, this means that you have to export all of your BigQuery data to GCS and every time you decide to make any change to the data you need to go back to BigQuery and export again. Also if the data you want to prediction on is in BigQuery you have to export that as well and send it to Cloud ML Engine using a separate system.
If you want to explore and interactively train Logistic or Linear regression models on your data, you can use BigQuery Machine learning. This will allow you to slice and dice your data in BigQuery and experiment with different parts of your data and various preprocessing options. You can also use all the power of SQL. BigQuery ML also allows you to use the model after training within BigQuery (you can use SQL to feed data in to the model).
For many cases using full power of Tensorflow (i.e. using DNNs) is not necessary. This is especially true for structured data. On the other hand, most of your time will be spent on preprocessing and cleaning the data which would be much easier in SQL in BigQuery.
So you have two options here. Choose based on your needs.
P.S.: You can also try using BigQuery Reader in Tensorflow. I don't recommend it as it is very slow. But if your data is not huge it may work for you.

Related

Difference Between Cloud Data fusion and DataFlow on GCP

What is the difference between GCP pipeline services:
Cloud Dataflow and Cloud Data fusion ...
which to you when?
I did a high level pricing taking 10 instances with Basic in Data fusion.
and 10 instance cluster (n1-standard-8) in Dataflow.
The pricing is more than double for Datafusion.
What are the pros and cons for each over one another
Cloud Dataflow is purpose built for highly parallelized graph processing. And can be used for batch processing and stream based processing. It is also built to be fully managed, obfuscating the need to manage and understand underlying resource scaling concepts e.g how to optimize shuffle performance or deal with key imbalance issues. The user/developer is responsible for building the graph via code; creating N transforms and or operations to achieve desired goal. For example: read files from storage, process each line in file, extract data from line, cast data to numeric, sum data in groups of X, write output to data lake.
Cloud Data Fusion is focused on enabling data integration scenarios => reading from source (via extensible set of connectors) and writing to targets e.g. BigQuery, storage, etc. It does have parallelization concepts, but they are not fully managed like Cloud Dataflow. CDF rides on top of Cloud Dataproc which is a managed version for Hadoop based processing. It's sweet spot is visual based graph development leveraging an extensible set of connectors and operators.
Your question is based on "cost" concepts. My advice is to take a step back and define what your processing/graph goal(s) look like. Then look at each products value. If you want full control over processing semantics with greater focus on analytics and want to run in batch and or must have streaming focus on Dataflow. If you want point and click data movement, with less focus need on data analytics AND do not need streaming then look at CDF.

Migrate from running ML training and testing locally to Google Cloud

I currently have a simple Machine Learning infrastructure running locally and I want to migrate this all onto Google Cloud. I simply fetch the data I need from a database, build my model and then test the model on test data. This is all done in PyCharm locally.
I want to simply migrate this and have the possibility for all this to be done on Google Cloud, while having the flexibility to make local changes that can apply when run on the cloud as well. There are many Google Cloud resources relating to this and so I am looking for best practices people follow on running such a procedure.
Thanks and please let me know if there are any clarifications needed.
I highly suggest you to take a look at this machine learning workflow in the cloud which consists of:
Data Ingestion and Collection
Storing the data.
Processing data.
ML training.
ML deployment.
Data Ingestion and Collection
There are multiple resources you can use if you would like to ingest data with Google Cloud Platform. The simplest solution I can recommend to you are both Google Compute Engine or an App Engine App (for example for a forum where a user fill some data up).
Nonetheless, if you would like to ingest data in real-time, you can also use Cloud Pub/Sub.
Storing the data
As you mentioned, you are retrieving all the information from a database. If you are used to work with SQL or NoSQL I highy suggest you to go after Cloud SQL. Not only provides a good interface when building your instance, but also lets you access it securely and very rapidly.
If it not the case, you can also use Google Cloud Storage or BigQuery, but over those two, I will pick BigQuery since it has also the possibility to work with stream data.
Processing data
For processing data before feeding it to the model you can use either:
Cloud DataFlow: Cloud Dataflow is a fully-managed service for transforming and enriching data in stream (real time) and batch (historical) modes with equal reliability and expressiveness -- no more complex workarounds or compromises needed.
Cloud Dataproc: Dataproc is a fast, easy-to-use, fully managed cloud service for running Apache Spark and Apache Hadoop clusters in a simpler, more cost-efficient way.
Cloud Dataprep: Cloud Dataprep by Trifacta is an intelligent data service for visually exploring, cleaning, and preparing structured and unstructured data for analysis, reporting, and machine learning.
ML training & ML deployment
For training/deploying your ML model I would suggest to use AI platform.
AI Platform makes it easy for machine learning developers, data scientists, and data engineers to take their ML projects from ideation to production and deployment, quickly and cost-effectively.
If you have to work with huge datasets, the best practices are run the model as a Tensorflow job with AI Platform so you can have a training cluster.
Finally for deploying your models using AI Platform, you can take a look here.

Big-query predict using sk-learn model

I have created a sklearn model at my local machine. Then I have uploaded it on google storage. I have created a model and version in AI Platform using the same model. It is working for online prediction. Now I want to perform batch prediction and store the data into big query such as it updates big query table every time I perform the prediction.
Can someone suggest me how to do it?
AI Platform does not support writing prediction results to BigQuery at the moment.
You can write the prediction results to BigQuery with Dataflow. There are two options here:
Create Dataflow job that makes the predictions itself.
Create Dataflow job that uses AI Platform to get the model's predictions. Probably this would use online predictions.
In both cases you can define a BigQuery sink to insert new rows to your table.
Alternatively, you can use Cloud Functions to update a BigQuery table whenever a new file appears in GCS. This solution would look like:
Use gcloud to run the batch prediction (`gcloud ml-engine jobs submit prediction ... --output-path="gs://[My Bucket]/batch-predictions/"
Results are written in multiple files: gs://[My Bucket]/batch-predictions/prediction.results-*-of-NNNNN
Cloud function is triggered to parse and insert the results to BigQuery. This Medium post explains how to this up setup

What is the recommended method to transport machine learning models?

I'm currently working on a machine learning problem and created a model in Dev environment where the data set is low in the order of few hundred thousands. How do I transport the model to Production environment where data set is very large in the order of billions.
Is there any general recommended way to transport machine learning models?
Depends on which Development Platform your using. I know that DL4J uses Hadoop Hyper Parameter server. I write my ML progs in C++ and use my own generated data, TensorFlow and others use Data that is compressed and unpacked using Python. For Realtime data I would suggest using one of the Boost librarys as I have found it useful in dealing with large amounts of RT data for example Image Processing with OpenCV. But I imagine there must be an equivalent set of librarys suited to your data. CSV data is easy to process using C++ or Python. Realtime (Boost), Images (OpenCV), csv (Python) or you can just write a program that pipes the data into your program using Bash (Tricky). You could have it buffer the data somehow and then routinely serve the data to your ML program and then retrieve the data and store it in a Mysql Database. Sounds like you need a Data server or a Data management program so the ML algo just works away on its chunk of data. Hope that helps.

Apache Spark (MLLib) for real time analytics

I have a few questions related with the use of Apache Spark for real-time analytics using Java. When the Spark application is submitted, the data that are stored in Cassandra database are loaded and processed via a machine learning algorithm (Support Vector Machine). Throughout Spark's streaming extension when new data arrive, they are persisted in the database, the existing dataset is re-trained and the SVM algorithm is executed. The output of this process is also stored back in the database.
Apache Spark's MLLib provides implementation of linear support vector machine. In case that I would like a non-linear SVM implementation, should I implement my own algorithm or may I use existing libraries such as libsvm or jkernelmachines? These implementations are not based on Spark's RDDs, is there a way to do this without implementing the algorithm from scratch using RDD collections? If not, that would be a huge effort if I would like to test several algorithms.
Is MLLib providing out of the box utilities for data scaling before executing the SVM algorithm? http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf as defined in section 2.2
While new dataset is streamed, do I need to re-train the hole dataset? Is there any way that I could just add the new data to the already trained data?
To answer your questions piecewise,
Spark provides the MLUtils class that allows you to load data from the LIBSVM format into RDDs - so just the data load portion won't stop you from utilizing that library. You could also implement your own algorithms if you know what you're doing, although my recommendation would be to take an existing one and tweak the objective function and see how it runs. Spark basically provides you the functionality of a distributed Stochastic Gradient Descent process - you can do anything with it.
Not that I know of. Hopefully someone else knows the answer.
What do you mean by re-training when the whole data is streamed?
From the docs,
.. except fitting occurs on each batch of data, so that the model continually updates to reflect the data from the stream.

Resources