Showing how much memory a data structure is using - memory

I have a huge hash containing about 10 years worth of daily statistical data. Is there is a way in Perl 6 to determine how much real memory (in bytes) this hash is using (e.g. showMemoryUsed(%myBigHash)). Even if %myBigHash is empty, it is not zero bytes because of the memory used and the Perl 6 implementation of the hash data type. This info will tell me if I need to re-implement my codes or periodically write out to file to alleviate RAM shortage (my program is running on a virtualized Linux with 2G RAM).
Thanks.

Alas, we don't have a thing like that in Rakudo Perl 6 yet. The only thing I can recommend, is using the Telemetry module:
use Telemetry;
my $before = T<max-rss>;
my %h = ...; # initialize hash
say "Memory usage grew { T<max-rss> - $before } KB";
Check out the Telemetry documentation for more information: https://docs.raku.org/type/Telemetry

Related

Why does Prometheus consume so much memory?

I'm using Prometheus 2.9.2 for monitoring a large environment of nodes.
As part of testing the maximum scale of Prometheus in our environment, I simulated a large amount of metrics on our test environment.
My management server has 16GB ram and 100GB disk space.
During the scale testing, I've noticed that the Prometheus process consumes more and more memory until the process crashes.
I've noticed that the WAL directory is getting filled fast with a lot of data files while the memory usage of Prometheus rises.
The management server scrapes its nodes every 15 seconds and the storage parameters are all set to default.
I would like to know why this happens, and how/if it is possible to prevent the process from crashing.
Thank you!
The out of memory crash is usually a result of a excessively heavy query. This may be set in one of your rules. (this rule may even be running on a grafana page instead of prometheus itself)
If you have a very large number of metrics it is possible the rule is querying all of them. A quick fix is by exactly specifying which metrics to query on with specific labels instead of regex one.
This article explains why Prometheus may use big amounts of memory during data ingestion. If you need reducing memory usage for Prometheus, then the following actions can help:
Increasing scrape_interval in Prometheus configs.
Reducing the number of scrape targets and/or scraped metrics per target.
P.S. Take a look also at the project I work on - VictoriaMetrics. It can use lower amounts of memory compared to Prometheus. See this benchmark for details.
Because the combination of labels lies on your business, the combination and the blocks may be unlimited, there's no way to solve the memory problem for the current design of prometheus!!!! But i suggest you compact small blocks into big ones, that will reduce the quantity of blocks.
Huge memory consumption for TWO reasons:
prometheus tsdb has a memory block which is named: "head", because head stores all the series in latest hours, it will eat a lot of memory.
each block on disk also eats memory, because each block on disk has a index reader in memory, dismayingly, all labels, postings and symbols of a block are cached in index reader struct, the more blocks on disk, the more memory will be cupied.
in index/index.go, you will see:
type Reader struct {
b ByteSlice
// Close that releases the underlying resources of the byte slice.
c io.Closer
// Cached hashmaps of section offsets.
labels map[string]uint64
// LabelName to LabelValue to offset map.
postings map[string]map[string]uint64
// Cache of read symbols. Strings that are returned when reading from the
// block are always backed by true strings held in here rather than
// strings that are backed by byte slices from the mmap'd index file. This
// prevents memory faults when applications work with read symbols after
// the block has been unmapped. The older format has sparse indexes so a map
// must be used, but the new format is not so we can use a slice.
symbolsV1 map[uint32]string
symbolsV2 []string
symbolsTableSize uint64
dec *Decoder
version int
}
We used the prometheus version 2.19 and we had a significantly better memory performance. This Blog highlights how this release tackles memory problems. i will strongly recommend using it to improve your instance resource consumption.

how Byte Address memory in Altera FPGA?

I worked with megafunctions to generate 32bit data memory in the fpga.but the output was addressed 32bit (4 bytes) at time , how to do 1 byte addressing ?
i have Altera Cyclone IV ep4ce6e22c8.
I'm designing a 32bit CPU in fpga ,
Nowadays every CPU address bus works in bytes. Thus to access your 32-bit wide memory you should NOT connect the LS 2 address bits. You can use the A[1:0] address bits to select a byte (or half word using A[1] only) from the memory when your read.
You still will need four byte write enable signals. This allows you to write word, half-words or bytes.
Have a look at existing CPU buses or existing connection standards like AHB or AXI.
Post edit:
but reading address 0001 , i get 0x05060708 but the desired value is 0x02030405.
What you are trying to do is read a word from a non-aligned address. There is no existing 32-bit wide memory that supports that. I suggest you have a look at how a 32-bit wide memory works.
The old Motorola 68020 architecture supported that. It requires a special memory controller which first reads the data from address 0 and then from address 4 and re-combines the data into a new 32-bit word.
With the cost of memory dropping and reducing CPU cycles becoming more important, no modern CPU supports that. They throw an exception: non-aligned memory access.
You have several choices:
Build a special memory controller which supports unaligned accesses.
Adjust your expectations.
I would go for the latter. In general it is based on the wrong idea how a memory works. As consolidation: You are not the first person on this website who thinks that is how you read words from memory.

Redis Memory Optimization suggestions

I have a Redis Master and 2 slaves. All 3 are currently on the same unix server. The memory used by the 3 instances is approximately 3.5 G , 3 G , 3G. There are about 275000 keys in the redis db. About 4000 are hashes. 1 Set has 100000 values. 1 List has 275000 keys in it. Its a List of Hashes and Sets. The server has total memory of 16 GB. Currently 9.5 GB is used. The persistence is currently off. The rdb file is written once in a day by forced background save. Please provide any suggestions for optimizations. max-ziplist configuration is default currently.
Optimizing Hashes
First, let's look at the hashes. Two important questions - how many elements in each hash, and what is the largest value in those hashes? A hash uses the memory efficient ziplist representation if the following condition is met:
len(hash) < hash-max-ziplist-entries && length-of-largest-field(hash) < hash-max-ziplist-value
You should increase the two settings in redis.conf based on your data, but don't increase it more than 3-4 times the default.
Optimizing Sets
A set with 100000 cannot be optimized, unless you provide additional details on your use case. Some general strategies though -
Maybe use HyperLogLog - Are you using the set to count unique elements? If the only commands you run are sadd and scard - maybe you should switch to a hyperloglog.
Maybe use Bloom Filter - Are you using the set to check for existence of a member? If the only commands you run are sadd and sismember - maybe you should implement a bloom filter and use it instead of the set.
How big is each element? - Set members should be small. If you are storing big objects, you are perhaps doing something incorrect.
Optimizing Lists
A single list with 275000 seems wrong. It is going to be slow to access elements in the center of the list. Are you sure you list is the right data structure for your use case?
Change list-compress-depth to 1 or higher. Read about this setting in redis.conf - there are tradeoffs. But for a list of 275000 elements, you certainly want to enable compression.
Tools
Use the open source redis-rdb-tools to analyze your data set (disclaimer: I am the author of this tool). It will tell you how much memory each key is taking. It will help you to decide where to concentrate your efforts on.
You can also refer to this memory optimization cheat sheet.
What else?
You have provided very little details on your use case. The best savings come from picking the right data structure for your use case. I'd encourage you to update your question with more details on what you are storing within the hash / list / set.
We did following configuration and that helped to reduce the memory footprint by 40%
list-max-ziplist-entries 2048
list-max-ziplist-value 10000
list-compress-depth 1
set-max-intset-entries 2048
hash-max-ziplist-entries 2048
hash-max-ziplist-value 10000
Also, we increased the RAM on the linux server and that helped us with the Redis memory issues.

How to see the content of the ON-CHIP RAM of my design in DE1-SOC FPGA?

I have made a design in Quartus-II, on which I take an arrange of 57.600, 32 bits binary numbers, process it (some simple arithmetic) and then output another arrange of 57.600, 32 bits binary numbers (3 sets). For the input of data I used readmemb for the output I had to use the On-Chip Ram library megawizard.
Now I want to check the resulting data in the On-Chip RAM, I want to see if it produced the right results. What should I do? What is the most straightforward easy way to do it?
I also meant to replace the readmemb with another On-Chip RAM and initialize with a .MIF. my intention is to create a synthetizable design not only simulated.
My board is the DE1-SOC, is there any application to easy get this information?

eheap allocated in erlang

I use recon_alloc:memory(allocated_types) and get info like below.
34> recon_alloc:memory(allocated_types).
[{binary_alloc,1546650440},
{driver_alloc,21504840},
{eheap_alloc,28704768840},
{ets_alloc,526938952},
{fix_alloc,145359688},
{ll_alloc,403701800},
{sl_alloc,688968},
{std_alloc,67633992},
{temp_alloc,21504840}]
The eheap_alloc is using 28G. But sum up with heap_size of all process
>lists:sum([begin {_, X}=process_info(P, heap_size), X end || P <- processes()]).
683197586
Only 683M !Any idea where is the 28G ?
You are not comparing the right values. From erlang:process_info
{heap_size, Size}
Size is the size in words of youngest heap generation of the
process. This generation currently include the stack of the process.
This information is highly implementation dependent, and may change if
the implementation change.
recon_alloc:memory(allocated_types) is in bytes by default. You can change it using set_unit. It is not the memory that is currently used but it is the memory reserved by the VM grouped into different allocators. You can use recon_alloc:memory(used) instead. More details in allocator() - Recon Library
Searching through the Erlang source code for the eheap_alloc keyword I didn't come up with much. The most relevant piece of code was this XML code from erts_alloc.xml (https://github.com/erlang/otp/blob/172e812c491680fbb175f56f7604d4098cdc9de4/erts/doc/src/erts_alloc.xml#L46):
<tag><c>eheap_alloc</c></tag>
<item>Allocator used for Erlang heap data, such as Erlang process heaps.</item>
This says that process heaps are stored in eheap_alloc but it doesn't say what else is stored in eheap_alloc. The eheap_alloc stores everything your application needs to run along with some extra memory along with some additional space, so the VM doesn't have to request more memory from the OS every time something needs to be added. There are things the VM must keep in memory that aren't associated with a specific process. For example, large binaries, even though they may used within a process, are not stored inside that processes heap. They are stored in a shared process binary heap called binary_alloc. The binary heap, along with the process heaps and some extra memory, are what make up eheap_alloc.
In your case it looks like you have a lot of memory in your binary_alloc. binary_alloc is probably using a significant portion of your eheap_alloc.
For more details on binary handling checkout these pages:
http://blog.bugsense.com/post/74179424069/erlang-binary-garbage-collection-a-love-hate
http://www.erlang.org/doc/efficiency_guide/binaryhandling.html#id65224

Resources