How are the equational reasoning operators used in practice? - agda

The Agda Standard Library exports some operators that allow you to write proofs in a manner similar to what you would do on paper, or how it is taught in the Haskell community. While you can write "conventional" Agda proofs in a somewhat systematic manner by refining a Goal using with abstractions, rewrites or helper lemmas as needed, it isn't really clear to me how a proof using the equality reasoning primitives "comes to be".
That is, while you can find examples about what these proofs look like when they are finished and type-check here and there, these already worked examples don't show you how they are developed in a systematic step-by-step (maybe hole-driven) manner.
How is it done in practice? Do people "refactor" an already existing proof? Do you try to "burn the candle from both sides" by starting with the left-hand and right-hand sides of the initial Goal and a hole in the middle?
Furthermore, the Agda documentation states that if the equality reasoning primitives are in scope, "then Auto will do equality reasoning using these constructs". What does that mean?
I would appreciate it if someone could point me in the right direction, or even post an example of how they develop these kinds of proofs step-by-step, what questions they ask themselves as they go through it, where they put the holes and so on. Thanks!

I think it would be more helpful for you to look at the definitions for equational reasoning for Identity here Equational Reasoning. The main point is that it is just a nicer way to apply transitivity chains and allowing the user to see the actual expression in code, rather than the proof evidence which is not that easy to read.
The way I go about building a proof using equational reasoning for any setoid is this. With the example of natural numbers
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
m + zero = m
m + succ n = succ (m + n)
Let's take commutativity as an example.
This is how I start with the goals.
comm+ : ∀ m n → m + n ≡ n + m
comm+ m zero = {!!}
comm+ m (succ n) =
begin
succ (m + n)
≡⟨ {!!} ⟩
succ n + m
∎
Now I see the original expression and goal and my goal proof is between the brackets.
I work only on the expression leaving the proof objects untouched and add
what I think should work.
comm+ : ∀ m n → m + n ≡ n + m
comm+ m zero = {!!}
comm+ m (succ n) =
begin
succ (m + n)
≡⟨ {!!} ⟩
succ (n + m)
≡⟨ {!!}⟩
succ n + m
∎
Once I think I have a proof, I work on the proof objects that justify my steps.
Regarding the auto-tactic, you should not bother with that in my opinion. It's not being worked on for a while.

Related

Pointwise Equality ≗ vs Propositional Equality ≡ in Agda

When trying to prove a property over functions using list, I had to prove that the property is preserved by map over a list. Gladly, I found this useful congruence proof in Agda's standard library (here):
map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g
map-cong f≗g [] = refl
map-cong f≗g (x ∷ xs) = cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
I am trying to do my proof with respect to propositional equality ≡ but map-cong proves pointwise equality ≗. I have several questions here:
I noticed that map-cong was previously implemented via ≡ but was generalized (I found this issue). This suggests that ≗ is a generalization of ≡. Is there a way to conclude propositional equality from pointwise equality? Something like a function f ≗ g → f ≡ g?
When looking at the implementation, point-wise equality seems to be defined as propositional equality for functions via the extensionality axiom: Two functions are equal if they yield the same results for all inputs. This is emphasized by the above definition of map-cong which indeed matches not only on the proof f≗g but also on possible input arguments. Is my understanding correct? Is there any documentation or explanation on the implementation of ≗? I found the implementation in the standard library to be undocumented and rather intricate, split across several files and using multiple levels of abstraction.
(Is there any way to conventiently browse the standard library except for browsing the source code (e.g., via grep or clicking in Github)?)
No there isn't.
That's correct. The definition of ≗ is a bit involved because it reuses existing notion but you can ask Agda to normalise it (C-c C-n in emacs) and see that it's just:
λ {A} {B} f g → (x : A) → f x ≡ g x
I typically use http://agda.github.io/agda-stdlib/

How to prove that the halving function over positive rationals always has an existential?

open import Data.Nat using (ℕ;suc;zero)
open import Data.Rational
open import Data.Product
open import Relation.Nullary
open import Data.Bool using (Bool;false;true)
halve : ℕ → ℚ
halve zero = 1ℚ
halve (suc p) = ½ * halve p
∃-halve : ∀ {a b} → 0ℚ < a → a < b → ∃[ p ] (halve p * b < a)
∃-halve {a} {b} 0<a a<b = h 1 where
h : ℕ → ∃[ p ] (halve p * b < a)
h p with halve p * b <? a
h p | .true because ofʸ b'<a = p , b'<a
h p | .false because ofⁿ ¬b'<a = h (suc p)
The termination checker fails in that last case and it is no wonder as the recursion obviously is neither well funded nor structural. Nevertheless, I am quite sure this should be valid, but have no idea how to prove the termination of ∃-halve. Any advice for how this might be done?
When you’re stuck on a lemma like this, a good general principle is to forget Agda and its technicalities for a minute. How would you prove it in ordinary human-readable mathematical prose, in as elementary way as possible?
Your “iterated halving” function is computing b/(2^p). So you’re trying to show: for any positive rationals a, b, there is some natural p such that b/(2^p) < a. This inequality is equivalent to 2^p > b/a. You can break this down into two steps: find some natural n ≥ b/a, and then find some p such that 2^p > n.
As mentioned in comments, a natural way to do find such numbers would be to implement the ceiling function and the log_2 function. But as you say, those would be rather a lot of work, and you don’t need them here; you just need existence of such numbers. So you can do the above proof in three steps, each of which is elementary enough for a self-contained Agda proof, requiring only very basic algebraic facts as background:
Lemma 1: for any rational q, there’s some natural n > q. (Proof: use the definition of the ordering on rationals, and a little bit of algebra.)
Lemma 2: for any natural n, there’s some natural p such that 2^p > n. (Proof: take e.g. p := (n+1); prove by induction on n that 2^(n+1) > n.)
Lemma 3: these together imply the theorem about halving that you wanted. (Proof: a bit of algebra with rationals, showing that the b/(2^p) < a is equivalent to 2^p > b/a, and showing that your iterated-halving function gives b/2^p.)

Why Left Identity over "Addition" is trivial proof but Right Identity is not?

I am just learning the Agda, but I do not understand that when I am trying to prove Identity over Addition then, I see that Left Identity is trivial proof.
left+identity : ∀ n -> (zero + n) ≡ n
left+identity n = refl
But It is not true for Right Identity.
right+identity : ∀ n -> (n + zero) ≡ n
right+identity zero = refl
right+identity (suc n) = cong suc (right+identity n)
I can not understand the reason. Please explain. Thanks.
The problem is how dependent typed theories deal with equality. Usually, the definition of addition is:
_+_ : Nat -> Nat -> Nat
zero + m = m -- (1)
(suc n) + m = suc (n + m) -- (2)
Notice that equation one implies left identity. When you have:
forall n -> 0 + n = n
Agda's type checker can use equation (1) of addition to verify that the equality holds. Remember, the propositional equality constructor (refl) has the type
refl : x == x
So, when you use refl as an proof for the left identity, Agda will try to reduce both sides of equality (normalize them) and check if they are indeed equal. Using the definition of addition, left identity is immediate, by equation (1).
But for the right identity this does not hold by definition. Note that when we have
n + 0 == n
Agda's type checker cannot use addition equations in order to check that this equality indeed hold. The only way to prove this equality is using induction (or, if your prefer, recursion).
Hope that this can help you.

Provable coherence in OTT

I'm playing with observational type theory.
Here is equality of π-types (π is the lowercase Π, i.e. π A B is the code for (x : A) -> B x) defined mutually with coercions:
π A₁ B₁ ≃ π A₂ B₂ = σ (A₂ ≃ A₁) λ P -> π _ λ x -> B₁ (coerce P x) ≃ B₂ x
and equality of functions defined accordingly (σ is the lowercase Σ):
_≅_ {A = π A₁ B₁} {π A₂ B₂} f₁ f₂ = σ (A₂ ≃ A₁) λ P -> π _ λ x -> f₁ (coerce P x) ≅ f₂ x
So instead of "equal functions map equal inputs to equal outputs" we have "equal functions map definitionally equal inputs to equal outputs".
In this setting coherence
coerce : ∀ {α β} {A : Univ α} {B : Univ β} -> ⟦ A ≃ B ⟧ᵀ -> ⟦ A ⟧ᵀ -> ⟦ B ⟧ᵀ
coherence : ∀ {α β} {A : Univ α} {B : Univ β}
-> (P : ⟦ A ≃ B ⟧ᵀ) -> (x : ⟦ A ⟧ᵀ) -> ⟦ x ≅ coerce P x ⟧ᵀ
(Univ 0 is Prop, Univ (suc α) is Type α)
is provable. The only thing I needed to postulate is
postulate ≃-refl : ∀ {α} -> (A : Univ α) -> ⟦ A ≃ A ⟧ᵀ
But we can tweak equality to handle A ≃ A as a special case (I think, trustMe needs a friend _≟_ : ∀ {α} {A : Set α} (x y : A) -> Maybe (x ≡ y)).
We still need to postulate something to define subst and other stuff.
Did I miss something? Do we lose any irrelevance? It seems suspicious to mention type equality in the definition of equality of functions. Do we lose much by restricting inputs of equal functions to be definitionally equal? Is there anything good about having strongly normalizing coherence or it doesn't matter, since it's computationally irrelevant anyway?
The code (I ignored positivity, termination and cumulativity issues altogether).
Firstly, thanks for asking about Observational Type Theory. Secondly, what you've done here does seem to hang together, even though it has things in different places from where Thorsten Altenkirch, Wouter Swierstra and I put them in our version of the story. Thirdly, it's no surprise (at least not to me) that coherence is derivable, leaving reflexivity the only postulate. That's true of our OTT as well, and Wouter did the proofs in Agda 1, back when we wrote that paper. Proof irrelevance and the shortness of life meant I didn't port his proofs to Agda 2.
If you've missed anything, it's lurking in your remark
We still need to postulate something to define subst and other stuff.
If you have some P : X -> Set, some a, b : X and some q : a = b, you expect to get a function in P a -> P b. The "equal functions take equal inputs to equal outputs" formulation gives you that, as refl P : P = P, so from q, we can deduce P a = P b. Your "equal functions take a given input to equal outputs" formulation does not allow you to let q bridge the gap from a to b.
In the presence of refl and subst, "two equal inputs" amounts to the same thing as "one input used in two places". It seems to me that you've moved the work into whatever else you need to get subst. Depending on how lazy your definition of coerce is (and that's how you get proof irrelevance), you will need only a postulate.
With your particular formulation, you might even get away with a homogeneous value equality. If you're fixing type gaps with coercions rather than equations, you might save yourself some trouble (and maybe get rid of that equation on the domain type in function equality). Of course, in that case, you'd need to think about how to replace the statement of coherence.
We tried quite hard to keep coercion out of the definition of equality, to retain some sort of symmetry, and to keep type equations out of value equations, mostly to have less to think about at one go. It's interesting to see that at least some parts of the construction might get easier with "a thing and its coercion" replacing "two equal things".

Using multiple EqReasoning instantiations conveniently

Is there a way to conveniently use multiple instantiations of EqReasoning where the underlying Setoid is not necessarily semantic equality (i.e. ≡-Reasoning cannot be used)? The reason that ≡-Reasoning is convenient is that the type argument is implicit and it uniquely determines the Setoid in use by automatically selecting semantic equality. When using arbitrary Setoids there is no such unique selection. However a number of structures provide a canonical way to lift a Setoid:
Data.Maybe and Data.Covec have a setoid member.
Data.Vec.Equality.Equality provides enough definitions to write a canonical Setoid lifting for Vec as well. Interestingly there is also is a slightly different equality available at Relation.Binary.Vec.Pointwise, but it does not provide a direct lifting either albeit implementing all the necessary bits.
Data.List ships a Setoid lifting in Relation.Binary.List.Pointwise.
Data.Container also knows how to lift a Setoid.
By using any of these structures, one automatically gets to work with multiple Setoids even if one started out with one. When proofs use these structures (multiple of them in a single proof), it becomes difficult to write down the proof, because EqReasoning must be instantiated for all of them even though each particular Setoid is kind of obvious. This can be done by renaming begin_, _≈⟨_⟩_ and _∎, but I don't consider this renaming convenient.
Consider for example, a proof in the Setoid of Maybe where a sequence of arguments needs to be wrapped in Data.Maybe.Eq.just (think cong just) or a proof in an arbitrary Setoid that temporarily needs to wrap things in a just constructor exploiting its injectivity.
Normally, the only way Agda can pick something for you is when it is uniquely determined by the context. In the case of EqReasoning, there isn't usually enough information to pin down the Setoid, even worse actually: you could have two different Setoids over the same Carrier and _≈_ (consider for example two definitionally unequal proofs of transitivity in the isEquivalence field).
However, Agda does allow special form of implicit arguments, which can be filled as long as there is only one value of the desired type. These are known as instance arguments (think instance as in Haskell type class instances).
To demonstrate roughly how this works:
postulate
A : Set
a : A
Now, instance arguments are wrapped in double curly braces {{}}:
elem : {{x : A}} → A
elem {{x}} = x
If we decide to later use elem somewhere, Agda will check for any values of type A in scope and if there's only one of them, it'll fill that one in for {{x : A}}. If we added:
postulate
b : A
Agda will now complain that:
Resolve instance argument _x_7 : A. Candidates: [a : A, b : A]
Because Agda already allows you to perform computations on type level, instance arguments are deliberately limited in what they can do, namely Agda won't perform recursive search to fill them in. Consider for example:
eq : ... → IsEquivalence _≈_ → IsEquivalence (Eq _≈_)
where Eq is Data.Maybe.Eq mentioned in your question. When you then require Agda to fill in an instance argument of a type IsEquivalence (Eq _≈_), it won't try to find something of type IsEquivalence _≈_ and apply eq to it.
With that out of the way, let's take a look at what could work. However, bear in mind that all this stands on unification and as such you might need to push it in the right direction here and there (and if the types you are dealing with become complex, unification might require you to give it so many directions that it won't be worth it in the end).
Personally, I find instance arguments a bit fragile and I usually avoid them (and from a quick check, it would seem that so does the standard library), but your experience might vary.
Anyways, here we go. I constructed a (totally nonsensical) example to demonstrate how to do it. Some boilerplate first:
open import Data.Maybe
open import Data.Nat
open import Relation.Binary
import Relation.Binary.EqReasoning as EqR
To make this example self-contained, I wrote some kind of Setoid with natural numbers as its carrier:
data _≡ℕ_ : ℕ → ℕ → Set where
z≡z : 0 ≡ℕ 0
s≡s : ∀ {m n} → m ≡ℕ n → suc m ≡ℕ suc n
ℕ-setoid : Setoid _ _
ℕ-setoid = record
{ _≈_ = _≡ℕ_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
refl : Reflexive _≡ℕ_
refl {zero} = z≡z
refl {suc _} = s≡s refl
sym : Symmetric _≡ℕ_
sym z≡z = z≡z
sym (s≡s p) = s≡s (sym p)
trans : Transitive _≡ℕ_
trans z≡z q = q
trans (s≡s p) (s≡s q) = s≡s (trans p q)
Now, the EqReasoning module is parametrized over a Setoid, so usually you do something like this:
open EqR ℕ-setoid
However, we'd like to have the Setoid parameter to be implicit (instance) rather than explicit, so we define and open a dummy module:
open module Dummy {c ℓ} {{s : Setoid c ℓ}} = EqR s
And we can write this simple proof:
idʳ : ∀ n → n ≡ℕ (n + 0)
idʳ 0 = z≡z
idʳ (suc n) = begin
suc n ≈⟨ s≡s (idʳ n) ⟩
suc (n + 0) ∎
Notice that we never had to specify ℕ-setoid, the instance argument picked it up because it was the only type-correct value.
Now, let's spice it up a bit. We'll add Data.Maybe.setoid into the mix. Again, because instance arguments do not perform a recursive search, we'll have to define the setoid ourselves:
Maybeℕ-setoid = setoid ℕ-setoid
_≡M_ = Setoid._≈_ Maybeℕ-setoid
I'm going to postulate few stupid things just to demonstrate that Agda indeed picks correct setoids:
postulate
comm : ∀ m n → (m + n) ≡ℕ (n + m)
eq0 : ∀ n → n ≡ℕ 0
eq∅ : just 0 ≡M nothing
lem : ∀ n → just (n + 0) ≡M nothing
lem n = begin
just (n + 0) ≈⟨ just
(begin
n + 0 ≈⟨ comm n 0 ⟩
n ≈⟨ eq0 n ⟩
0 ∎
)⟩
just 0 ≈⟨ eq∅ ⟩
nothing ∎
I figured an alternative to the proposed solution using instance arguments that slightly bends the requirements, but fits my purpose. The major burden in the question was having to explicitly open EqReasoning multiple times and especially having to invent new names for the contained symbols. A slight improvement would be to pass the correct Setoid once per relation proof. In other words passing it to begin_ or _∎ somehow. Then we could make the Setoid implicit for all the other functions!
import Relation.Binary.EqReasoning as EqR
import Relation.Binary using (Setoid)
module ExplicitEqR where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 2 _∎
begin⟨_⟩_ : ∀ {c l} (X : Setoid c l) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → Setoid._≈_ X x y
begin⟨_⟩_ X p = EqR.begin_ X p
_∎ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → EqR._IsRelatedTo_ X x x
_∎ {X = X} = EqR._∎ X
_≈⟨_⟩_ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → Setoid._≈_ X x y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≈⟨_⟩_ {X = X} = EqR._≈⟨_⟩_ X
_≡⟨_⟩_ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → x ≡ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≡⟨_⟩_ {X = X} = EqR._≡⟨_⟩_ X
Reusing the nice example from Vitus answer, we can write it:
lem : ∀ n → just (n + 0) ≡M nothing
lem n = begin⟨ Data.Maybe.setoid ℕ-setoid ⟩
just (n + 0) ≈⟨ just
(begin⟨ ℕ-setoid ⟩
n + 0 ≈⟨ comm n 0 ⟩
n ≈⟨ eq0 n ⟩
0 ∎
)⟩
just 0 ≈⟨ eq∅ ⟩
nothing ∎
where open ExplicitEqR
One still has to mention the Setoids in use, to avoid the use of instance arguments as presented by Vitus. However the technique makes it significantly more convenient.

Resources