posix 'pthread_mutex_timedlock' infinite time as parameter - pthreads

I am using
int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,
const struct timespec *restrict abs_timeout);
What can I put in abs_timeout so the method will wait infinite time till lock is available?
I don't want to use pthread_mutex_lock.
Thanks

I do not think such a value exists in POSIX. I expect that if you specify an invalid time value the implementation cannot handle, you might get an error such as EINVAL. This means that specifying a ridiculously large time as the timeout will not work, either.

Related

Is it safe to use process_post within a callback function of Rime? - Contiki

I am working with Rime, more specifically with the runicast example. Once a message is received i store it in a linked list, then i post an event to a process which is in charge of extracting messages from the linked list and processing them. My code is something like this:
static void recv_runicast(struct runicast_conn *c,
const linkaddr_t *from, uint8_t seqno)
{
/*code to insert the message into the linked list*/
...
/*Post an event to the process which extracts messages from the linked list */
process_post(&extract_msg_from_linked_list, PROCESS_EVENT_CONTINUE, NULL);
}
My question is: Is it safe to use process_post within the callback function recv_runicast? or should i use process_poll?
Thanks in advance
Yes, it's safe. The network stack operations are done in process context, and Contiki processes are not preemptive. So pretty much any process-related operations are "safe".
The main differences between process_post and process_poll is that the former will put a new event in the process event buffer, while the latter will simply set a flag. So the second options is slightly more efficient. Also, in theory the event buffer can get full and events start to get lost, but that's very unlikely to be a problem.
I would use none of these functions at all, but do the processing directly in the callback to simplify the execution flow.

Passing Data through the Stack

I wanted to see if you could pass struct through the stack and I manage to get a local var from a void function in another void function.
Do you guys thinks there is any use to that and is there any chance you can get corrupted data between the two function call ?
Here's the Code in C (I know it's dirty)
#include <stdio.h>
typedef struct pouet
{
int a,b,c;
char d;
char * e;
}Pouet;
void test1()
{
Pouet p1;
p1.a = 1;
p1.b = 2;
p1.c = 3;
p1.d = 'a';
p1.e = "1234567890";
printf("Declared struct : %d %d %d %c \'%s\'\n", p1.a, p1.b, p1.c, p1.d, p1.e);
}
void test2()
{
Pouet p2;
printf("Element of struct undeclared : %d %d %d %c \'%s\'\n", p2.a, p2.b, p2.c, p2.d, p2.e);
p2.a++;
}
int main()
{
test1();
test2();
test2();
return 0;
}
Output is :
Declared struct : 1 2 3 a '1234567890'
Element of struct undeclared : 1 2 3 a '1234567890'
Element of struct undeclared : 2 2 3 a '1234567890'
Contrary to the opinion of the majority, I think it can work out in most of the cases (not that you should rely on it, though).
Let's check it out. First you call test1, and it gets a new stack frame: the stack pointer which signifies the top of the stack goes up. On that stack frame, besides other things, memory for your struct (exactly the size of sizeof(struct pouet)) is reserved and then initialized. What happens when test1 returns? Does its stack frame, along with your memory, get destroyed?
Quite the opposite. It stays on the stack. However, the stack pointer drops below it, back into the calling function. You see, this is quite a simple operation, it's just a matter of changing the stack pointer's value. I doubt there is any technology that clears a stack frame when it is disposed. It's just too costy a thing to do!
What happens then? Well, you call test2. All it stores on the stack is just another instance of struct pouet, which means that its stack frame will most probably be exactly the same size as that of test1. This also means that test2 will reserve the memory that previously contained your initialized struct pouet for its own variable Pouet p2, since both variables should most probably have the same positions relative to the beginning of the stack frame. Which in turn means that it will be initialized to the same value.
However, this setup is not something to be relied upon. Even with concerns about non-standartized behaviour aside, it's bound to be broken by something as simple as a call to a different function between the calls to test1 and test2, or test1 and test2 having stack frames of different sizes.
Also, you should take compiler optimizations into account, which could break things too. However, the more similar your functions are, the less chances there are that they will receive different optimization treatment.
Of course there's a chance you can get corrupted data; you're using undefined behavior.
What you have is undefined behavior.
printf("Element of struct undeclared : %d %d %d %c \'%s\'\n", p2.a, p2.b, p2.c, p2.d, p2.e);
The scope of the variable p2 is local to function test2() and as soon as you exit the function the variable is no more valid.
You are accessing uninitialized variables which will lead to undefined behavior.
The output what you see is not guaranteed at all times and on all platforms. So you need to get rid of the undefined behavior in your code.
The data may or may not appear in test2. It depends on exactly how the program was compiled. It's more likely to work in a toy example like yours than in a real program, and it's more likely to work if you turn off compiler optimizations.
The language definition says that the local variable ceases to exist at the end of the function. Attempting to read the address where you think it was stored may or may produce a result; it could even crash the program, or make it execute some completely unexpected code. It's undefined behavior.
For example, the compiler might decide to put a variable in registers in one function but not in the other, breaking the alignment of variables on the stack. It can even do that with a big struct, splitting it into several registers and some stack — as long as you don't take the address of the struct it doesn't need to exist as an addressable chunk of memory. The compiler might write a stack canary on top of one of the variables. These are just possibilities at the top of my head.
C lets you see a lot behind the scenes. A lot of what you see behind the scenes can completely change from one production compilation or run to the next.
Understanding what's going on here is useful as a debugging skill, to understand where values that you see in a debugger might be coming from. As a programming technique, this is useless since you aren't making the computer accomplish any particular result.
Just because this works for one compiler doesn't mean that it will for all. How uninitialized variables are handled is undefined and one computer could very well init pointers to null etc without breaking any rules.
So don't do this or rely on it. I have actually seen code that depended on functionality in mysql that was a bug. When that was fixed in later versions the program stopped working. My thoughts about the designer of that system I'll keep to myself.
In short, never rely on functionality that is not defined. If you knowingly use it for a specific function and you are prepared that an update to the compiler etc can break it and you keep an eye out for this at all times it might be something you could explain and live with. But most of the time this is far from a good idea.

Resart a task in FreeRTOS

I have a specific task routine which performs some operations in a specific order, and these operations handle few volatile variables. There is a specific interrupt which updates these volatile variables asynchronously. Hence, the task routine should restart if such an interrupt occurs. Normally FreeRTOS will resume the task, but this will result in wrong derived values, hence the requirement for restarting the routine. I also cannot keep the task routine under critical section, because I should not be missing any interrupts.
Is there a way in FreeRTOS with which I can achieve this? Like a vtaskRestart API. I could have deleted the task and re-created it, but this adds a lot of memory management complications, which I would like to avoid. Currently my only option is to add checks in the routine on a flag to see if a context switch have occured and if yes, restart, else continue.
Googling did not fetch any clue on this. Seems like people never faced such a problem or may be its that this design is poor. In FreeRTOS forum, few who asked for a task-restart didn't seem to have this same problem. stackOverflow didn't have a result on freertos + task + restart. So, this could be the first post with this tag combination ;)
Can someone please tell me if this is directly possible in FreeRTOS?
You can use semaphore for this purpose. If you decide using semaphore, you should do the steps below.
Firstly, you should create a binary semaphore.
The semaphore must be given in the interrupt routine with
xSemaphoreGiveFromISR( Example_xSemaphore, &xHigherPriorityTaskWoken
);
And, you must check taking semaphore in the task.
void vExample_Task( void * pvParameters )
{
for( ;; )
{
if (xSemaphoreTake( Example_xSemaphore, Example_PROCESS_TIME)==pdTRUE)
{
}
}
}
For this purpose you should use a queue and use the queue peek function to yield at your volatile data.
I'm using it as I have a real time timer and this way I make the time available to all my task, without any blocking.
Here it how it goes:
Declare the queue:
xQueueHandle RTC_Time_Queue;
Create the queue of 1 element:
RTC_Time_Queue = xQueueCreate( 1, sizeof(your volatile struct) );
Overwrite the queue everytime your interrupt occurs:
xQueueOverwriteFromISR(RTC_Time_Queue, (void*) &time);
And from other task peek the queue:
xQueuePeek(RTC_GetReadQueue(), (void*) &TheTime, 0);
The 0 at the end of xQueuePeek means you don't want to wait if the queue is empty. The queue peek won't delete the value in the queue so it will be present every time you peek and the code will never stop.
Also you should avoid having variable being accessed from ISR and the RTOS code as you may get unexpected corruption.

Odd behavior when creating and cancelling a thread in close succession

I'm using g++ version 4.4.3 (Ubuntu 4.4.3-4ubuntu5) and libpthread v. 2-11-1. The following code simply creates a thread running Foo(), and immediately cancels it:
void* Foo(void*){
printf("Foo\n");
/* wait 1 second, e.g. using nanosleep() */
return NULL;
}
int main(){
pthread_t thread;
int res_create, res_cancel;
printf("creating thread\n);
res_create = pthread_create(&thread, NULL, &Foo, NULL);
res_cancel = pthread_cancel(thread);
printf("cancelled thread\n);
printf("create: %d, cancel: %d\n", res_create, res_cancel);
return 0;
}
The output I get is:
creating thread
Foo
Foo
cancelled thread
create: 0, cancel: 0
Why the second Foo output? Am I abusing the pthread API by calling pthread_cancel right after pthread_create? If so, how can I know when it's safe to touch the thread? If I so much as stick a printf() between the two, I don't have this problem.
I cannot reproduce this on a slightly newer Ubuntu. Sometimes I get one Foo and sometimes none. I had to fix a few things to get your code to compile (missing headers, missing call to some sleep function implied by a comment and string literals not closed), which indicate you did not paste the actual code which reproduced the problem.
If the problem is indeed real, it might indicate some thread cancellation problem in glibc's IO library. It looks a lot like two threads doing a flush(stdout) on the same buffer contents. Now that should never happen normally because the IO library is thread safe. But what if there is some cancellation scenario like: the thread has the mutex on stdout, and has just done a flush, but has not updated the buffer yet to clear the output. Then it is canceled before it can do that, and the main thread flushes the same data again.

trouble reading from __global memory after atom_inc in OpenCL

OpenCL doesn't have a global barrier that will stop all threads, so I'm trying to create a work around with the following code:
void barrier(__global uint* scratch) {
uint nThreads = get_global_size(0);
atom_inc(scratch);
/* this loop never terminates */
while(scratch[0] < nThreads) {
continue;
}
}
The idea is that each thread loops until all of them increment that one piece of memory.
However, the value read from scratch[0] never changes for the threads once it's been read, and it loops forever. I know it's being incremented because it's the correct value when I read it back to the host.
Is the global memory being locally cached? What's going on here?
Found the problem: the order in which work groups are executed is implementation defined. This means that some threads might start only after others have finished.
In the code I gave, the work groups that are started first will loop forever waiting on the the others to hit the 'barrier'. And the work groups that would be started later won't ever start because they're waiting for the first ones to finish.
If the implementation (I'm on a Radeon 5750, using Stream SDK 2.2) executes all work groups concurrently, then it probably wouldn't be an issue. But that's not the case for my setup.

Resources