I am using an iPhone camera to detect a TV screen. My current approach is to compare subsequent frames pixel by pixel and keep track of cumulative differences. The result is binary a image as shown in image.
For me this looks like a rectangle but OpenCV does not think so. It's sides are not perfectly straight and sometimes there is even more color bleed to make detection difficult. Here is my OpenCV code trying to detect rectangle, since I am not very familiar with OpenCV it is copied from some example I found.
uint32_t *ptr = (uint32_t*)CVPixelBufferGetBaseAddress(buffer);
cv::Mat image((int)width, (int)height, CV_8UC4, ptr); // unsigned 8-bit values for 4 channels (ARGB)
cv::Mat image2 = [self matFromPixelBuffer:buffer];
std::vector<std::vector<cv::Point>>squares;
// blur will enhance edge detection
cv::Mat blurred(image2);
GaussianBlur(image2, blurred, cvSize(3,3), 0);//change from median blur to gaussian for more accuracy of square detection
cv::Mat gray0(blurred.size(), CV_8U), gray;
std::vector<std::vector<cv::Point> > contours;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++) {
int ch[] = {c, 0};
mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; l++) {
// Use Canny instead of zero threshold level!
// Canny helps to catch squares with gradient shading
if (l == 0) {
Canny(gray0, gray, 10, 20, 3); //
// Dilate helps to remove potential holes between edge segments
dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
} else {
gray = gray0 >= (l+1) * 255 / threshold_level;
}
// Find contours and store them in a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
// Test contours
std::vector<cv::Point> approx;
int biggestSize = 0;
for (size_t i = 0; i < contours.size(); i++) {
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);
if (approx.size() != 4)
continue;
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
int areaSize = fabs(contourArea(cv::Mat(approx)));
if (approx.size() == 4 && areaSize > biggestSize)
biggestSize = areaSize;
cv::RotatedRect boundingRect = cv::minAreaRect(approx);
float aspectRatio = boundingRect.size.width / boundingRect.size.height;
cv::Rect boundingRect2 = cv::boundingRect(approx);
float aspectRatio2 = (float)boundingRect2.width / (float)boundingRect2.height;
bool convex = isContourConvex(cv::Mat(approx));
if (approx.size() == 4 &&
fabs(contourArea(cv::Mat(approx))) > minArea &&
(aspectRatio >= minAspectRatio && aspectRatio <= maxAspectRatio) &&
isContourConvex(cv::Mat(approx))) {
double maxCosine = 0;
for (int j = 2; j < 5; j++) {
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAXIMUM(maxCosine, cosine);
}
double area = fabs(contourArea(cv::Mat(approx)));
if (maxCosine < 0.3) {
squares.push_back(approx);
}
}
}
}
After Canny-step the image looks like this:
It seems fine to me but for some reason rectangle is not detected. Can anyone explain if there is something wrong with my parameters?
My second approach was to use OpenCV Hough line detection, basically using the same code as above, for Canny image I then call HoughLines function. It gives me quite a few lines as I had to lower threshold to detect vertical lines. The result looks like this:
The problem is that there are some many lines. How can I find out the lines that are touching the sides of blue rectangle as shown in first image?
Or is there a better approach to detect a screen?
First of all, find maximal area contour reference, then compure min area rectangle reference, divide contour area by rectangle area, if it close enough to 1 then your contour similar to rectangle. This will be your required contour and rectangle.
Related
I am trying to segment an image of rocks and I get a decent result. But now I need to count the pixels in the largest colored object.
The picture above shows a segmented image of a rock pile and I want to count the number of green pixels which denote the largest rock in the image. And then also count the 2nd largest,i.e, the yellow one. After counting I would like to compare it with the ground truth to compare my results.
The code to get the segmented image is referred from Watershed segmentation opencv. A part of my code is also given below :
cv::findContours(peaks_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// Create the marker image for the watershed algorithm
// CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
cv::Mat markers = cv::Mat::zeros(input_image.size(), CV_32S);
// Draw the foreground markers
for (size_t i = 0; i < contours.size(); i++)
{
cv::drawContours(markers, contours, static_cast<int>(i), cv::Scalar(static_cast<int>(i) + 1), -1);
}
// Draw the background marker
cv::circle(markers, cv::Point(5, 5), 3, cv::Scalar(255), -1);
cv::watershed(in_sharpened_image, markers);
// Generate random colors; result of watershed
std::vector<cv::Vec3b> colors;
for (size_t i = 0; i < contours.size(); i++)
{
int b = cv::theRNG().uniform(0, 256); //0,256
int g = cv::theRNG().uniform(0, 256);
int r = cv::theRNG().uniform(0, 256);
colors.push_back(cv::Vec3b((uchar)b, (uchar)g, (uchar)r));
}
// Create the result image
cv::Mat dst = cv::Mat::zeros(markers.size(), CV_8UC3);
// Fill labeled objects with random colors
for (int i = 0; i < markers.rows; i++)
{
for (int j = 0; j < markers.cols; j++)
{
int index = markers.at<int>(i, j);
if (index > 0 && index <= static_cast<int>(contours.size()))
{
dst.at<cv::Vec3b>(i, j) = colors[index - 1];
}
}
}
Question: Is there an efficient way to count the pixels inside the largest/marker in opencv?
You can calculate a histogram of markers using cv::calcHist with range from 0 to contours.size() + 1 and find the largest value in it starting from the index 1.
Instead of counting pixels you could use contourArea() for your largest contour. This will work much faster.
Something like this.
cv::Mat mask;
// numOfSegments - number of your labels (colors)
for (int i = 0; i < numOfSegments; i++) {
std::vector<cv::Vec4i> hierarchy;
// this "i + 2" may be different for you
// depends on your labels allocation.
// This is thresholding to get mask with
// contour of your #i label (color)
cv::inRange(markers, i + 2, i + 2, mask);
contours.clear();
findContours(mask, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
double area = cv::contourArea(contours[0]);
}
Having contours in hands is also good because after watershed() they will be quite "noisy" with lots of small peaks and not suitable for most of using in the "raw" form. Having contour you may smooth it with gauss or approxPoly, etc., as well as check for some important properties or contour shape if you need it.
for example, this rectangle center is hole.
(white each pixel value = 255, black value = 0)
but, I want to fill this hole. (like picture below)
how to fill hole by rectangle using OpenCV.
First find its convex hull, then fill in the inner region of it:
cv::Mat inputImage = cv::imread("input.jpg", CV_LOAD_IMAGE_GRAYSCALE);
cv::threshold(inputImage, inputImage, 10, 255, 0);
// find non-zero elements
cv::Mat nonZeroCoordinates;
cv::findNonZero(inputImage, nonZeroCoordinates);
cv::vector<cv::Point> points;
for (int i = 0; i < nonZeroCoordinates.total(); i++)
{
points.push_back(nonZeroCoordinates.at<cv::Point>(i));
}
// Find convex hull
std::vector<int> hull;
cv::convexHull(cv::Mat(points), hull, false);
cv::vector<cv::Point> hullpoints;
int hullcount = (int)hull.size();
for (int i = 0; i < hullcount; i++)
{
cv::Point pt = points[hull[i]];
hullpoints.push_back(pt);
}
std::vector<std::vector<cv::Point> > fillContAll;
fillContAll.push_back(hullpoints);
cv::Mat result = cv::Mat::zeros(inputImage.size(), CV_8UC1);
cv::fillPoly(result, fillContAll, cv::Scalar(255));
Given your original image:
This is your final result:
I am struggling with finding the appropriate contour algorithm for a low quality image. The example image shows a rock scene:
What I am trying to achieve is to find contours arround features such as:
light areas
dark areas
grey1 areas
grey2 areas
etc. until grey-n areas
(The number of areas shall be a parameter of choice)
I do not want to take a simple binary-threshold but rather use some sort of contour-finding (for example watershed or other). The major feature-lines shall be kept, noise within a feature-are can be flattened.
The result of my code can be seen on the images to the right.
Unfortunately, as you can easily tell, the colors do not really represent the original large-scale image features! For example: check out the two areas that I circled with red - these features are almost completely flooded with another color. What I imagine is that at least the very light and the very dark areas are covered by its own color.
cv::Mat cv_src = cv::imread(argv[1]);
cv::Mat output;
cv::Mat cv_src_gray;
cv::cvtColor(cv_src, cv_src_gray, cv::COLOR_RGB2GRAY);
double clipLimit = 0.1;
cv::Size titleGridSize = cv::Size(8,8);
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit, titleGridSize);
clahe->apply(cv_src_gray, output);
cv::equalizeHist(output, output);
cv::cvtColor(output, cv_src, cv::COLOR_GRAY2RGB);
// Create binary image from source image
cv::Mat bw;
cv::cvtColor(cv_src, bw, cv::COLOR_BGR2GRAY);
cv::threshold(bw, bw, 180, 255, cv::THRESH_BINARY);
// Perform the distance transform algorithm
cv::Mat dist;
cv::distanceTransform(bw, dist, cv::DIST_L2, CV_32F);
// Normalize the distance image for range = {0.0, 1.0}
cv::normalize(dist, dist, 0, 1., cv::NORM_MINMAX);
// Threshold to obtain the peaks
cv::threshold(dist, dist, .2, 1., cv::THRESH_BINARY);
// Create the CV_8U version of the distance image
cv::Mat dist_8u;
dist.convertTo(dist_8u, CV_8U);
// Find total markers
std::vector<std::vector<cv::Point> > contours;
cv::findContours(dist_8u, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
int ncomp = contours.size();
// Create the marker image for the watershed algorithm
cv::Mat markers = cv::Mat::zeros(dist.size(), CV_32S);
// Draw the foreground markers
for (int i = 0; i < ncomp; i++)
cv::drawContours(markers, contours, i, cv::Scalar::all(i+1), -1);
// Draw the background marker
cv::circle(markers, cv::Point(5,5), 3, CV_RGB(255,255,255), -1);
// Perform the watershed algorithm
cv::watershed(cv_src, markers);
// Generate random colors
std::vector<cv::Vec3b> colors;
for (int i = 0; i < ncomp; i++)
{
int b = cv::theRNG().uniform(0, 255);
int g = cv::theRNG().uniform(0, 255);
int r = cv::theRNG().uniform(0, 255);
colors.push_back(cv::Vec3b((uchar)b, (uchar)g, (uchar)r));
}
// Create the result image
cv::Mat dst = cv::Mat::zeros(markers.size(), CV_8UC3);
// Fill labeled objects with random colors
for (int i = 0; i < markers.rows; i++)
{
for (int j = 0; j < markers.cols; j++)
{
int index = markers.at<int>(i,j);
if (index > 0 && index <= ncomp)
dst.at<cv::Vec3b>(i,j) = colors[index-1];
else
dst.at<cv::Vec3b>(i,j) = cv::Vec3b(0,0,0);
}
}
// Show me what you got
imshow("final_result", dst);
I think you can use a simple clustering such as k-means for this, then examine the cluster centers (or the mean and standard deviations of each cluster). I quickly tried it in matlab.
im = imread('tvBqt.jpg');
gr = rgb2gray(im);
x = double(gr(:));
idx = kmeans(x, 4);
cl = reshape(idx, 600, 472);
figure,
subplot(1, 2, 1), imshow(gr, []), title('original')
subplot(1, 2, 2), imshow(label2rgb(cl), []), title('clustered')
The result:
You could try using SLIC Superpixels. I tried it and showed some good results. You could vary the parameters to get better clustering.
SLIC Superpixels
SLIC Superpixels with OpenCV C++
SLIC Superpixels with OpenCV Python
I wrote a digital OCR for ios.
I have a test image png with two digits 5 and 4.
I find the contours. How do I transfer the contour one at tesseract?
init tesseract:
tess = new tesseract::TessBaseAPI();
tess->Init([dataPath cStringUsingEncoding:NSUTF8StringEncoding], "eng");
tess->SetPageSegMode(tesseract::PSM_SINGLE_CHAR); //<-- !!!!
tess->tesseract::TessBaseAPI::SetVariable("tessedit_char_whitelist", "0123456789");
Function for detect contours:
- (std::vector<std::vector<cv::Point> >)findSquaresInImage:(cv::Mat)_image {
std::vector<std::vector<cv::Point> > squares;
cv::Mat pyr, timg, gray0(_image.size(), CV_8U), gray;
int thresh = 50, N = 11;
cv::pyrDown(_image, pyr, cv::Size(_image.cols/2, _image.rows/2));
cv::pyrUp(pyr, timg, _image.size());
std::vector<std::vector<cv::Point> > contours;
int ch[] = {0, 0};
mixChannels(&timg, 1, &gray0, 1, ch, 1);
for( int l = 0; l < N; l++ ) {
if( l == 0 ) {
cv::Canny(gray0, gray, 0, thresh, 5);
cv::dilate(gray, gray, cv::Mat(), cv::Point(-1,-1));
}
else {
gray = gray0 >= (l+1)*255/N;
}
cv::findContours(gray, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
std::vector<cv::Point> approx;
CvRect rec1;
std::string str;
std::map<int,IplImage*> pic_list;
for( size_t i = 0; i < contours.size(); i++ )
{
rec1 = cv::boundingRect(contours[i]);
if (rec1.height > 0.5*gray.rows && rec1.width < 0.756*gray.cols) {
NSLog(#"%d %d %d %d", rec1.width, rec1.height, rec1.x, rec1.y);
cv::approxPolyDP(cv::Mat(contours[i]), approx, arcLength(cv::Mat(contours[i]), true)*0.02, true);
squares.push_back(approx);
}
}
}
return squares; }
function for draw contours:
cv::Mat debugSquares( std::vector<std::vector<cv::Point> > squares, cv::Mat image ) {
for ( int i = 0; i< squares.size(); i++ ) {
// draw contour
cv::drawContours(image, squares, i, cv::Scalar(255,0,0), 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point());
// draw bounding rect
cv::Rect rect = boundingRect(cv::Mat(squares[i]));
cv::rectangle(image, rect.tl(), rect.br(), cv::Scalar(0,255,0), 2, 8, 0);
// draw rotated rect
cv::RotatedRect minRect = minAreaRect(cv::Mat(squares[i]));
cv::Point2f rect_points[4];
minRect.points( rect_points );
for ( int j = 0; j < 4; j++ ) {
cv::line( image, rect_points[j], rect_points[(j+1)%4], cv::Scalar(0,0,255), 1, 8 ); // blue
}
}
return image;
}
method for btn Click:
- (IBAction)onMath:(id)sender {
UIImage *image = [UIImage imageNamed:#"test1.png"];
cv::Mat iMat = [self cvMatFromUIImage:image];
std::vector<std::vector<cv::Point> > sq = [self findSquaresInImage:iMat];
cv::Mat hui = debugSquares(sq, iMat);
image = [self UIImageFromCVMat:hui];
self.imView.image = image;
}
image after:
link to project on github: https://github.com/MaxPatsy/iORC
Can you check this answer here
I described some tips for preparing images for Tesseract here: Using tesseract to recognize license plates
In your example, there are several things going on...
You need to get the text to be black and the rest of the image white (not the reverse). That's what character recognition is tuned on. Grayscale is ok, as long as the background is mostly full white and the text mostly full black; the edges of the text may be gray (antialiased) and that may help recognition (but not necessarily - you'll have to experiment)
One of the issues you're seeing is that in some parts of the image, the text is really "thin" (and gaps in the letters show up after thresholding), while in other parts it is really "thick" (and letters start merging). Tesseract won't like that :) It happens because the input image is not evenly lit, so a single threshold doesn't work everywhere. The solution is to do "locally adaptive thresholding" where a different threshold is calculated for each neighbordhood of the image. There are many ways of doing that, but check out for example:
Adaptive gaussian thresholding in OpenCV with cv2.adaptiveThreshold(...,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,...)
Local Otsu's method
Local adaptive histogram equalization
Another problem you have is that the lines aren't straight. In my experience Tesseract can handle a very limited degree of non-straight lines (a few percent of perspective distortion, tilt or skew), but it doesn't really work with wavy lines. If you can, make sure that the source images have straight lines :) Unfortunately, there is no simple off-the-shelf answer for this; you'd have to look into the research literature and implement one of the state of the art algorithms yourself (and open-source it if possible - there is a real need for an open source solution to this). A Google Scholar search for "curved line OCR extraction" will get you started, for example:
Text line Segmentation of Curved Document Images
Lastly: I think you would do much better to work with the python ecosystem (ndimage, skimage) than with OpenCV in C++. OpenCV python wrappers are ok for simple stuff, but for what you're trying to do they won't do the job, you will need to grab many pieces that aren't in OpenCV (of course you can mix and match). Implementing something like curved line detection in C++ will take an order of magnitude longer than in python (* this is true even if you don't know python).
Good luck!
as the title says i'm trying to find the number of non-zero pixels in a certain area of a cv::Mat, namely within a RotatedRect.
For a regular Rect one could simply use countNonZeroPixels on a ROI. However ROIs can only be regular (non rotated) rectangles.
Another idea was to draw the rotated rectangle and use that as a mask. However openCV neither supports the drawing of rotated rectangles nor does countNonZeroPixels accept a mask.
Does anyone have a solution for how to elegantly solve this ?
Thank you !
Ok, so here's my first take at it.
The idea is to rotate the image reverse to the rectangle's rotation and than apply a roi on the straightened rectangle.
This will break if the rotated rectangle is not completely within the image
You can probably speed this up by applying another roi before rotation to avoid having to rotate the whole image...
#include <highgui.h>
#include <cv.h>
// From http://stackoverflow.com/questions/2289690/opencv-how-to-rotate-iplimage
cv::Mat rotateImage(const cv::Mat& source, cv::Point2f center, double angle)
{
cv::Mat rot_mat = cv::getRotationMatrix2D(center, angle, 1.0);
cv::Mat dst;
cv::warpAffine(source, dst, rot_mat, source.size());
return dst;
}
int main()
{
cv::namedWindow("test1");
// Our rotated rect
int x = 300;
int y = 350;
int w = 200;
int h = 50;
float angle = 47;
cv::RotatedRect rect = cv::RotatedRect(cv::Point2f(x,y), cv::Size2f(w,h), angle);
// An empty image
cv::Mat img = cv::Mat(cv::Size(640, 480), CV_8UC3);
// Draw rotated rect as an ellipse to get some visual feedback
cv::ellipse(img, rect, cv::Scalar(255,0,0), -1);
// Rotate the image by rect.angle * -1
cv::Mat rotimg = rotateImage(img, rect.center, -1 * rect.angle);
// Set roi to the now unrotated rectangle
cv::Rect roi;
roi.x = rect.center.x - (rect.size.width / 2);
roi.y = rect.center.y - (rect.size.height / 2);
roi.width = rect.size.width;
roi.height = rect.size.height;
cv::imshow("test1", rotimg(roi));
cv::waitKey(0);
}
A totally different approach might be to rotate your image (in opposite direction), and still use the rectangular ROI in combination with countNonZeroPixels. The only problem will be that you have to rotate your image around a pivot of the center of the ROI...
To make it clearer, see attached example:
To avoid rotation in similar task I iterate over each pixel in RotatedRect with such function:
double filling(Mat& img, RotatedRect& rect){
double non_zero = 0;
double total = 0;
Point2f rect_points[4];
rect.points( rect_points );
for(Point2f i=rect_points[0];norm(i-rect_points[1])>1;i+=(rect_points[1]-i)/norm((rect_points[1]-i))){
Point2f destination = i+rect_points[2]-rect_points[1];
for(Point2f j=i;norm(j-destination)>1;j+=(destination-j)/norm((destination-j))){
if(img.at<uchar>(j) != 0){
non_zero+=1;
}
total+=1;
}
}
return non_zero/total;
}
It's looks like usual iteration over rectangle, but on each step we add unit 1px vector to current point in direction to destination.
This loop NOT iterate over all points and skip a few pixels, but it was okay for my task.
UPD: It much better to use LineIterator to iterate:
Point2f rect_points[4];
rect.points(rect_points);
Point2f x_start = rect_points[0];
Point2f x_end = rect_points[1];
Point2f y_direction = rect_points[3] - rect_points[0];
LineIterator x = LineIterator(frame, x_start, x_end, 4);
for(int i = 0; i < x.count; ++i, ++x){
LineIterator y = LineIterator(frame, x.pos(), x.pos() + y_direction, 4);
for(int j=0; j < y_count; j++, ++y){
Vec4b pixel = frame.at<Vec4b>(y.pos);
/* YOUR CODE HERE */
}
}