A typical approach using CNNs consists of the convolutional part and the fully connected layers part which are connected with a flatten layer. This layer transforms the output of the conv. part (of a shape (x, y, z)) into a 1D feature vector which is past to the classifier consisting of the fully connected layers.
My problem is finding just one pixel in the image which is a center of some object, while the topology/texture of the whole image leads to this point. So I'd like to have a model, which doesn't have the flatten layer, instead the FC part takes individual vectors from the output of conv. part and the output of the FC layers is the distance to this pixel of interest (I think that these individual feature vectors carry this information). The idea is easy, but how to train this? I'm wondering whether this could be implemented somehow in tensorflow (or any other framework)?
The other option is a typical model with the flatten layer. The FC part would take the whole output from the conv. part (the whole feature map) and it would predict the position of the wanted pixel. Do you think these two variants are equivalent? It'd be great as this second option is very easy to implement in any framework.
This sounds like a segmentation problem, the only difference is that usual models predict the bounding box (4 floating values), while you wish to predict a single value (if that's what you mean by distance). But it's not crucial in terms of code, because it's just replacement of classification head with regression head. Both of your described methods seem to do the same.
Here's a sample code in tensorflow:
# Assume:
# layer.shape = (?, 16, 16, 64) <- last CNV layer output
# y.shape = (?, 1) <- target distance
# FC layer params: will output (?, 128)
w_fc = tf.Variable(tf.random_normal([16 * 16 * 64, 128]))
b_fc = tf.Variable(tf.random_normal([128]))
# Output layer params: will output (?, 1)
w_out = tf.Variable(tf.random_normal([128, 1]))
b_out = tf.Variable(tf.random_normal([1]))
# Reshape to make applicable to the FC layer
reshaped = tf.reshape(layer, [-1, w_fc.get_shape().as_list()[0]])
fc = tf.add(tf.matmul(reshaped, w_fc), b_fc)
fc = tf.nn.relu(fc)
out = tf.add(tf.matmul(fc, w_out), b_out)
# Standard L2 loss
loss = tf.reduce_mean(tf.nn.l2_loss(out - y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
Related
I have implemented Autoencoder using Keras that takes 112*112*3 neurons as input and 100 neurons as the compressed/encoded state. I want to find the neurons out of these 100 that learns the important features. So far i have calculated eigen values(e) and eigen vectors(v) using the following steps. And i found out that around first 30 values of (e) is greater than 0. Does that mean the first 30 modes are the important ones? Is there any other method that could find the important neurons?
Thanks in Advance
x_enc = enc_model.predict(x_train, batch_size=BATCH_SIZE) # shape (3156,100)
x_mean = np.mean(x_enc, axis=0) # shape (100,)
x_stds = np.std(x_enc, axis=0) # shape (100,)
x_cov = np.cov((x_enc - x_mean).T) # shape (100,100)
e, v = np.linalg.eig(x_cov) # shape (100,) and (100,100) respectively
I don't know if the approach you are using will actually give you any useful results since the way the network learns and what it exactly learns aren't known, I suggest you use a different kind of autoencoder, that automatically learns disentangled representations of the data in a latent space, this way you can be sure that all the parameters you find are actually contributing to the representation of your data. check this article
Say, I have a 10x10x4 intermediate output of a convolution layer, which I need to split into 100 1x1x4 volume and apply softmax on each to get 100 outputs from the network. Is there any way to accomplish this without using the Lambda layer? The issue with the Lambda layer in this case is this simple task of splitting takes 100 passes through the lambda layer during forward pass, which makes the network performance very slow for my practical use. Please suggest a quicker way of doing this.
Edit: I had already tried the Softmax+Reshape approach before asking the question. With that approach, I would be getting a 10x10x4 matrix reshaped to a 100x4 Tensor with use of Reshape as the output. What I really need is a multi output network with 100 different outputs. In my application, it is not possible to jointly optimize over the 10x10 matrix, but I get good results by using a network with 100 different outputs with the Lambda layer.
Here are code snippets of my approach using the Keras functional API:
With Lambda layer (slow, gives 100 Tensors of shape (None, 4) as desired):
# Assume conv_output is output from a convolutional layer with shape (None, 10, 10,4)
preds = []
for i in range(10):
for j in range(10):
y = Lambda(lambda x, i,j: x[:, i, j,:], arguments={'i': i,'j':j})(conv_output)
preds.append(Activation('softmax',name='predictions_' + str(i*10+j))(y))
model = Model(inputs=img, outputs=preds, name='model')
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),
metrics=['accuracy']
With Softmax+Reshape (fast, but gives Tensor of shape (None, 100, 4))
# Assume conv_output is output from a convolutional layer with shape (None, 10, 10,4)
y = Softmax(name='softmax', axis=-1)(conv_output)
preds = Reshape([100, 4])(y)
model = Model(inputs=img, outputs=preds, name='model')
model.compile(loss='categorical_crossentropy',
optimizer=Adam(),
metrics=['accuracy']
I don't think in the second case it is possible to individually optimize over each of the 100 outputs (probably one can think of it as learning the joint distribution, whereas I need to learn the marginals as in the first case). Please let me know if there is any way to accomplish what I am doing with the Lambda layer in the first code snippet in a faster way
You can use the Softmax layer and set the axis argument to the last axis (i.e. -1) to apply softmax over that axis:
from keras.layers import Softmax
soft_out = Softmax(axis=-1)(conv_out)
Note that the axis argument by default is set to -1, so you may not even need to pass that.
I would like to code with Keras a neural network that acts both as an autoencoder AND a classifier for semi-supervised learning. Take for example this dataset where there is a few labeled images and a lot of unlabeled images: https://cs.stanford.edu/~acoates/stl10/
Some papers listed here achieved that, or very similar things, successfully.
To sum up: if the model would have the same input data shape and the same "encoding" convolutional layers, but would split into two heads (fork-style), so there is a classification head and a decoding head, in a way that the unsupervised autoencoder will contribute to a good learning for the classification head.
With TensorFlow there would be no problem doing that as we have full control over the computational graph.
But with Keras, things are more high-level and I feel that all the calls to ".fit" must always provide all the data at once (so it would force me to tie together the classification head and the autoencoding head into one time-step).
One way in keras to almost do that would be with something that goes like this:
input = Input(shape=(32, 32, 3))
cnn_feature_map = sequential_cnn_trunk(input)
classification_predictions = Dense(10, activation='sigmoid')(cnn_feature_map)
autoencoded_predictions = decode_cnn_head_sequential(cnn_feature_map)
model = Model(inputs=[input], outputs=[classification_predictions, ])
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit([images], [labels, images], epochs=10)
However, I think and I fear that if I just want to fit things in that way it will fail and ask for the missing head:
for epoch in range(10):
# classifications step
model.fit([images], [labels, None], epochs=1)
# "semi-unsupervised" autoencoding step
model.fit([images], [None, images], epochs=1)
# note: ".train_on_batch" could probably be used rather than ".fit" to avoid doing a whole epoch each time.
How should one implement that behavior with Keras? And could the training be done jointly without having to split the two calls to the ".fit" function?
Sometimes when you don't have a label you can pass zero vector instead of one hot encoded vector. It should not change your result because zero vector doesn't have any error signal with categorical cross entropy loss.
My custom to_categorical function looks like this:
def tricky_to_categorical(y, translator_dict):
encoded = np.zeros((y.shape[0], len(translator_dict)))
for i in range(y.shape[0]):
if y[i] in translator_dict:
encoded[i][translator_dict[y[i]]] = 1
return encoded
When y contains labels, and translator_dict is a python dictionary witch contains labels and its unique keys like this:
{'unisex':2, 'female': 1, 'male': 0}
If an UNK label can't be found in this dictinary then its encoded label will be a zero vector
If you use this trick you also have to modify your accuracy function to see real accuracy numbers. you have to filter out all zero vectors from our metrics
def tricky_accuracy(y_true, y_pred):
mask = K.not_equal(K.sum(y_true, axis=-1), K.constant(0)) # zero vector mask
y_true = tf.boolean_mask(y_true, mask)
y_pred = tf.boolean_mask(y_pred, mask)
return K.cast(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)), K.floatx())
note: You have to use larger batches (e.g. 32) in order to prevent zero matrix update, because It can make your accuracy metrics crazy, I don't know why
Alternative solution
Use Pseudo Labeling :)
you can train jointly, you have to pass an array insted of single label.
I used fit_generator, e.g.
model.fit_generator(
batch_generator(),
steps_per_epoch=len(dataset) / batch_size,
epochs=epochs)
def batch_generator():
batch_x = np.empty((batch_size, img_height, img_width, 3))
gender_label_batch = np.empty((batch_size, len(gender_dict)))
category_label_batch = np.empty((batch_size, len(category_dict)))
while True:
i = 0
for idx in np.random.choice(len(dataset), batch_size):
image_id = dataset[idx][0]
batch_x[i] = load_and_convert_image(image_id)
gender_label_batch[i] = gender_labels[idx]
category_label_batch[i] = category_labels[idx]
i += 1
yield batch_x, [gender_label_batch, category_label_batch]
I am newbie in convolutional neural networks and just have idea about feature maps and how convolution is done on images to extract features. I would be glad to know some details on applying batch normalisation in CNN.
I read this paper https://arxiv.org/pdf/1502.03167v3.pdf and could understand the BN algorithm applied on a data but in the end they mentioned that a slight modification is required when applied to CNN:
For convolutional layers, we additionally want the normalization to obey the convolutional property – so that different elements of the same feature map, at different locations, are normalized in the same way. To achieve this, we jointly normalize all the activations in a mini- batch, over all locations. In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations – so for a mini-batch of size m and feature maps of size p × q, we use the effec- tive mini-batch of size m′ = |B| = m · pq. We learn a pair of parameters γ(k) and β(k) per feature map, rather than per activation. Alg. 2 is modified similarly, so that during inference the BN transform applies the same linear transformation to each activation in a given feature map.
I am total confused when they say
"so that different elements of the same feature map, at different locations, are normalized in the same way"
I know what feature maps mean and different elements are the weights in every feature map. But I could not understand what location or spatial location means.
I could not understand the below sentence at all
"In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations"
I would be glad if someone cold elaborate and explain me in much simpler terms
Let's start with the terms. Remember that the output of the convolutional layer is a 4-rank tensor [B, H, W, C], where B is the batch size, (H, W) is the feature map size, C is the number of channels. An index (x, y) where 0 <= x < H and 0 <= y < W is a spatial location.
Usual batchnorm
Now, here's how the batchnorm is applied in a usual way (in pseudo-code):
# t is the incoming tensor of shape [B, H, W, C]
# mean and stddev are computed along 0 axis and have shape [H, W, C]
mean = mean(t, axis=0)
stddev = stddev(t, axis=0)
for i in 0..B-1:
out[i,:,:,:] = norm(t[i,:,:,:], mean, stddev)
Basically, it computes H*W*C means and H*W*C standard deviations across B elements. You may notice that different elements at different spatial locations have their own mean and variance and gather only B values.
Batchnorm in conv layer
This way is totally possible. But the convolutional layer has a special property: filter weights are shared across the input image (you can read it in detail in this post). That's why it's reasonable to normalize the output in the same way, so that each output value takes the mean and variance of B*H*W values, at different locations.
Here's how the code looks like in this case (again pseudo-code):
# t is still the incoming tensor of shape [B, H, W, C]
# but mean and stddev are computed along (0, 1, 2) axes and have just [C] shape
mean = mean(t, axis=(0, 1, 2))
stddev = stddev(t, axis=(0, 1, 2))
for i in 0..B-1, x in 0..H-1, y in 0..W-1:
out[i,x,y,:] = norm(t[i,x,y,:], mean, stddev)
In total, there are only C means and standard deviations and each one of them is computed over B*H*W values. That's what they mean when they say "effective mini-batch": the difference between the two is only in axis selection (or equivalently "mini-batch selection").
Some clarification on Maxim's answer.
I was puzzled by seeing in Keras that the axis you specify is the channels axis, as it doesn't make sense to normalize over the channels - as every channel in a conv-net is considered a different "feature". I.e. normalizing over all channels is equivalent to normalizing number of bedrooms with size in square feet (multivariate regression example from Andrew's ML course). This is usually not what you want - what you do is normalize every feature by itself. I.e. you normalize the number of bedrooms across all examples to be with mu=0 and std=1, and you normalize the the square feet across all examples to be with mu=0 and std=1.
This is why you want C means and stds, because you want a mean and std per channel/feature.
After checking and testing it myself I realized the issue: there's a bit of a confusion/misconception here. The axis you specify in Keras is actually the axis which is not in the calculations. i.e. you get average over every axis except the one specified by this argument. This is confusing, as it is exactly the opposite behavior of how NumPy works, where the specified axis is the one you do the operation on (e.g. np.mean, np.std, etc.).
I actually built a toy model with only BN, and then calculated the BN manually - took the mean, std across all the 3 first dimensions [m, n_W, n_H] and got n_C results, calculated (X-mu)/std (using broadcasting) and got identical results to the Keras results.
Hope this helps anyone who was confused as I was.
I'm only 70% sure of what I say, so if it does not make sense, please edit or mention it before downvoting.
About location or spatial location: they mean the position of pixels in an image or feature map. A feature map is comparable to a sparse modified version of image where concepts are represented.
About so that different elements of the same feature map, at different locations, are normalized in the same way:
some normalisation algorithms are local, so they are dependent of their close surrounding (location) and not the things far apart in the image. They probably mean that every pixel, regardless of their location, is treated just like the element of a set, independently of it's direct special surrounding.
About In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations: They get a flat list of every values of every training example in the minibatch, and this list combines things whatever their location is on the feature map.
Firstly we need to make it clear that the depth of a kernel is determined by previous feature map's channel num, and the number of kernel in this layer determins the channel num of next feature map (the next layer).
then we should make it clear that each kernel(three dimentional usually) will generate just one channel of feature map in the next layer.
thirdly we should try to accept the idea of each points in the generated feature map (regardless of their position) are generated by the same kernel, by sliding on previous layer. So they could be seen as a distribution generated by this kernel, and they could be seen as samples of a stochastic variable. Then they should be averaged to obtain the mean and then the variance. (it not rigid, only helps to understand)
This is what they say "so that different elements of the same feature map, at different locations, are normalized in the same way"
I am trying to use RBFNN for point cloud to surface reconstruction but I couldn't understand what would be my feature vectors in RBFNN.
Can any one please help me to understand this one.
A goal to get to this:
From inputs like this:
An RBF network essentially involves fitting data with a linear combination of functions that obey a set of core properties -- chief among these is radial symmetry. The parameters of each of these functions is learned by incremental adjustment based on errors generated through repeated presentation of inputs.
If I understand (it's been a very long time since I used one of these networks), your question pertains to preprocessing of the data in the point cloud. I believe that each of the points in your point cloud should serve as one input. If I understand properly, the features are your three dimensions, and as such each point can already be considered a "feature vector."
You have other choices that remain, namely the number of radial basis neurons in your hidden layer, and the radial basis functions to use (a Gaussian is a popular first choice). The training of the network and the surface reconstruction can be done in a number of ways but I believe this is beyond the scope of the question.
I don't know if it will help, but here's a simple python implementation of an RBF network performing function approximation, with one-dimensional inputs:
import numpy as np
import matplotlib.pyplot as plt
def fit_me(x):
return (x-2) * (2*x+1) / (1+x**2)
def rbf(x, mu, sigma=1.5):
return np.exp( -(x-mu)**2 / (2*sigma**2));
# Core parameters including number of training
# and testing points, minimum and maximum x values
# for training and testing points, and the number
# of rbf (hidden) nodes to use
num_points = 100 # number of inputs (each 1D)
num_rbfs = 20.0 # number of centers
x_min = -5
x_max = 10
# Training data, evenly spaced points
x_train = np.linspace(x_min, x_max, num_points)
y_train = fit_me(x_train)
# Testing data, more evenly spaced points
x_test = np.linspace(x_min, x_max, num_points*3)
y_test = fit_me(x_test)
# Centers of each of the rbf nodes
centers = np.linspace(-5, 10, num_rbfs)
# Everything is in place to train the network
# and attempt to approximate the function 'fit_me'.
# Start by creating a matrix G in which each row
# corresponds to an x value within the domain and each
# column i contains the values of rbf_i(x).
center_cols, x_rows = np.meshgrid(centers, x_train)
G = rbf(center_cols, x_rows)
plt.plot(G)
plt.title('Radial Basis Functions')
plt.show()
# Simple training in this case: use pseudoinverse to get weights
weights = np.dot(np.linalg.pinv(G), y_train)
# To test, create meshgrid for test points
center_cols, x_rows = np.meshgrid(centers, x_test)
G_test = rbf(center_cols, x_rows)
# apply weights to G_test
y_predict = np.dot(G_test, weights)
plt.plot(y_predict)
plt.title('Predicted function')
plt.show()
error = y_predict - y_test
plt.plot(error)
plt.title('Function approximation error')
plt.show()
First, you can explore the way in which inputs are provided to the network and how the RBF nodes are used. This should extend to 2D inputs in a straightforward way, though training may get a bit more involved.
To do proper surface reconstruction you'll likely need a representation of the surface that is altogether different than the representation of the function that's learned here. Not sure how to take this last step.