AWS server became slow after traffic increase - ruby-on-rails

I have a single page Angular app that makes request to a Rails API service. Both are running on a t2xlarge Ubuntu instance. I am using a Postgres database.
We had increase in traffic, and my Rails API became slow. Sometimes, I get an error saying Passenger queue full for rails application.
Auto scaling on the server is working; three more instances are created. But I cannot trace this issue. I need root access to upgrade, which I do not have. Please help me with this.

As you mentioned that you are using T2.2xlarge instance type. Firstly I want to tell you should not use T2 instance type for production environment. Cause of T2 instance uses CPU Credit. Lets take a look on this
What happens if I use all of my credits?
If your instance uses all of its CPU credit balance, performance
remains at the baseline performance level. If your instance is running
low on credits, your instance’s CPU credit consumption (and therefore
CPU performance) is gradually lowered to the base performance level
over a 15-minute interval, so you will not experience a sharp
performance drop-off when your CPU credits are depleted. If your
instance consistently uses all of its CPU credit balance, we recommend
a larger T2 size or a fixed performance instance type such as M3 or
C3.
Im not sure you won't face to the out of CPU Credit problem because you are using Xlarge type but I think you should use other fixed performance instance types. So instance's performace maybe one part of your problem. You should use cloudwatch to monitor on 2 metrics: CPUCreditUsage and CPUCreditBalance to make sure the problem.
Secondly, how about your ASG? After scale-out, did your service become stable? If so, I think you do not care about this problem any more because ASG did what it's reponsibility.

Please check the following
If you are opening a connection to Database, make sure you close it.
If you are using jquery, bootstrap, datatables, or other css libraries, use the CDN links like
<link rel="stylesheet" ref="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-select/1.12.4/css/bootstrap-select.min.css">
it will reduce a great amount of load on your server. do not copy the jquery or other external libraries on your own server when you can directly fetch it from other servers.

There are a number of factors that can cause an EC2 instance (or any system) to appear to run slowly.
CPU Usage. The higher the CPU usage the longer to process new threads and processes.
Free Memory. Your system needs free memory to process threads, create new processes, etc. How much free memory do you have?
Free Disk Space. Operating systems tend to thrash when the file systems on system drives run low on free disk space. How much free disk space do you have?
Network Bandwidth. What is the average bytes in / out for your
instance?
Database. Monitor connections, free memory, disk bandwidth, etc.
Amazon has CloudWatch which can provide you with monitoring for everything except for free disk space (you can add an agent to your instance for this metric). This will also help you quickly see what is happening with your instances.
Monitor your EC2 instances and your database.
You mention T2 instances. These are burstable CPUs which means that if you have consistenly higher CPU usage, then you will want to switch to fixed performance EC2 instances. CloudWatch should help you figure out what you need (CPU or Memory or Disk or Network performance).

This is totally independent of AWS Server. Looks like your software needs more juice (RAM, StorageIO, Network) and it is not sufficient with one machine. You need to evaluate the metric using cloudwatch and adjust software needs based on what is required for the software.
It could be memory leaks or processing leaks that may lead to this as well. You need to create clusters or server farm to handle the load.
Hope it helps.

Related

App engine for high memory rails application

Looks like the most powerful instance type you can have in Google App Engine is one with 2G memory. One of our Rails application reaches the memory limit quickly on higher load. Autoscaling helps but wondering if there is a way to add more power instances in GAE?
If not, how have you solved this problem?
yes, in App Engine Standard the higher tier is F4_HIGHMEM with 2048 MB of memory. You have 3 ways to scale up with standard:
Automatic: based on request rate, response latencies, and other application metrics.
Basic: creates dynamic instances when your application receives requests.
Manual: uses resident instances that continuously run the specified number of instances regardless of the load level.
Therefore, the question here would be how are you reaching this limit? How are you managing your memory? Take a look into your console metrics: memoryusage. A ladder graphs shown a bad usage of the memory. When deploying apps in the Cloud, you must have in mind that the usage of the resources bust be more accurate.
You can analyze and check if choosing an automatic scale based on Max concurrent Requests would be a good option for you to mitigate your issue with the memory.
This is for Standard, Flexible is managed different. You can specify from 0.9 to 6.5 GB per CPU core.

Perfino System Requirements

We're planning to evaluate and eventually potentially purchase perfino. I went quickly through the docs and cannot find the system requirements for the installation. Also I cannot find it's compatibility with JBoss 7.1. Can you provide details please?
There are no hard system requirements for disk space, it depends on the amount of business transactions that you're recording. All data will be consolidated, so the database reaches a maximum size after a while, but it's not possible to say what that size will be. Consolidation times can be configured in the general settings.
There are also no hard system requirements for CPU and physical memory. A low-end machine will have no problems monitoring 100 JVMs, but the exact details again depend on the amount of monitored business transactions.
JBoss 7.1 is supported. "Supported" means that web service and EJB calls can be tracked between JVMs, otherwise all application servers work with perfino.
I haven't found any official system requirements, but this is what we figured out experimentally.
We collect about 10,000 transactions a minute from 8 JVMs. We have a lot of distinct and long SQL queries. We use AWS machine with 2 VCPUs and 8GB RAM.
When the Perfino GUI is not being used, the CPU load is low. However, for the GUI to work properly, we had to modify perfino_service.vmoptions:
-Xmx6000m. Before that we had experienced multiple OutOfMemoryError in Perfino when filtering in the transactions view. After changing the memory settings, the GUI is running fine.
This means that you need a machine with about 8GB RAM. I guess this depends on the number of distinct transactions you collect. Our limit is high, at 30,000.
After 6 weeks of usage, there's 7GB of files in the perfino directory. Perfino can clear old recordings after a configurable time.

Defining Scaling Threshold for Azure Web Roles

Azure embraces the notion of elastic scaling and I've been able to acheive this with my Worker Roles. However, when it comes to my Web Roles (e.g. MVC Apps) I am not sure what to monitor (or how) to determine when its a good time to increase (or descrease) the number of running instances. I'm assuming I need to monitor one or many Performance Counters but not sure where to start.
Can anyone recommend a best practice for assessing an MVC Web Role instances load relative to scaling decisions?
This question is a bit open-ended, as monitoring is typically app-specific. Having said that:
Start with simple measurements that you'd look at on a local server, representing KPIs for your app. For instance: Maybe look at network utilization. This TechNet article describes performance counters collected by System Center for Windows Azure. For instance:
ASP.NET Applications Requests/sec
Network Interface Bytes
Received/sec
Network Interface Bytes Sent/sec
Processor % Processor Time Total
LogicalDisk Free Megabytes
LogicalDisk % Free Space
Memory Available Megabytes
You may also want to watch # of requests queued and request wait time.
Network utilization is interesting, since your NIC provides approx. 100Mbps per core and could end up being a bottleneck even when CPU and other resources are underutilized. You may need to scale out to more instances to handle high-bandwidth scenarios.
Also: I tend to give less importance to CPU utilization, even though it's so easy to measure (and shows up so frequently in examples). Running a CPU at near capacity is a good thing usually, since you're paying for it and might as well use as much as possible.
As far as decreasing: This needs to be handled a bit more carefully. Windows Azure compute is billed by the hour. If, say, you scale out to an extra instance at 11:50 and scale in again at 12:10, you've just incurred two cpu-hours. Also: You don't want to scale out, then take new measurements and deciding you can now scale back again (effectively creating a constant pulse of adding and decreasing instances). To make things easier, consider the Autoscaling Application Block (WASABi), found in the Enterprise Library. This has all the scale rules baked in (such as the ones I just mentioned) and is very straightforward to use.

Why is membase server so slow in response time?

I have a problem that membase is being very slow on my environment.
I am running several production servers (Passenger) on rails 2.3.10 ruby 1.8.7.
Those servers communicate with 2 membase machines in a cluster.
the membase machines each have 64G of memory and a100g EBS attached to them, 1G swap.
My problem is that membase is being VERY slow in response time and is actually the slowest part right now in all of the application lifecycle.
my question is: Why?
the rails gem I am using is memcache-northscale.
the membase server is 1.7.1 (latest).
The server is doing between 2K-7K ops per second (for the cluster)
The response time from membase (based on NewRelic) is 250ms in average which is HUGE and unreasonable.
Does anybody know why is this happening?
What can I do inorder to improve this time?
It's hard to immediately say with the data at hand, but I think I have a few things you may wish to dig into to narrow down where the issue may be.
First of all, do your stats with membase show a significant number of background fetches? This is in the Web UI statistics for "disk reads per second". If so, that's the likely culprit for the higher latencies.
You can read more about the statistics and sizing in the manual, particularly the sections on statistics and cluster design considerations.
Second, you're reporting 250ms on average. Is this a sliding average, or overall? Do you have something like max 90th or max 99th latencies? Some outlying disk fetches can give you a large average, when most requests (for example, those from RAM that don't need disk fetches) are actually quite speedy.
Are your systems spread throughout availability zones? What kind of instances are you using? Are the clients and servers in the same Amazon AWS region? I suspect the answer may be "yes" to the first, which means about 1.5ms overhead when using xlarge instances from recent measurements. This can matter if you're doing a lot of fetches synchronously and in serial in a given method.
I expect it's all in one region, but it's worth double checking since those latencies sound like WAN latencies.
Finally, there is an updated Ruby gem, backwards compatible with Fauna. Couchbase, Inc. has been working to add back to Fauna upstream. If possible, you may want to try the gem referenced here:
http://www.couchbase.org/code/couchbase/ruby/2.0.0
You will also want to look at running Moxi on the client-side. By accessing Membase, you need to go through a proxy (called Moxi). By default, it's installed on the server which means you might make a request to one of the servers that doesn't actually have the key. Moxi will go get it...but then you're doubling the network traffic.
Installing Moxi on the client-side will eliminate this extra network traffic: http://www.couchbase.org/wiki/display/membase/Moxi
Perry

Does every server in a MongoDB replica set need to have exactly the same RAM?

Can I set up a replica set in MongoDB 1.8 using servers with different amounts of RAM?
server1: 5gb
server2: 2gb
server3: 4gb
If yes, what are the pros and cons?
No, you do not need equal RAM. (Yes, you could set up a replica set as described.)
MongoDB uses memory-mapped files for all caching, which means that cache paging is handled by the operating system. The replicas with more memory will keep more of the database in memory; those with less will page more to disk.
MongoDB will eventually bring the entire database into memory if it can. If you're using two replicas for reads and one for writes, you might want to use the 5gb and 4gb machines for reads, so they are more likely to be hitting RAM.
Yes, you can configure a replica set this way.
If yes, what are the pros and cons?
Here's a doc explaining the major features of replica sets. Let's take a look at these in light of the RAM differences.
Pros:
More computers means better data redundancy. Having that 2GB node at least means that you have one more copy of the data.
Having a full 3 nodes on a replica set makes it easier to take one down for maintenance.
Cons:
Having servers of different sizes isn't great for automated failover. Let's say that your 5GB server is the primary. What happens when it goes down and the 2GB server wins the election? You still have automated fail-over, but your performance has probably dropped dramatically.
Read scaling may not work very well. Depending on your read patterns, sending reads to the 2GB server may result in lots of extra disk hits and slower performance.
So, the big problem here, is really one of performance. If you're just doing this for a dev setup, then it will basically work. But in production you run the risk of completely tanking your app. If your app is used to living on 4GB+ of RAM and then suddenly drops to 2GB, it may become unusable.
Most production setups want to fail over to another "equally-powered" computer.

Resources