Neural Network Custom Binary Prediction - machine-learning

I am trying to design a neural network that makes a custom binary prediction.
Normally to do binary prediction, I would use a softmax as my last layer, and then my loss could be the difference between the prediction I made and the true binary value.
However, what if I don't want to use a softmax layer. Instead, I output a real valued number, and check if some condition on this number is true. In a really simple case, I check if this number is positive. If it is, I predict 1, else I predict 0. Let's say I want all the numbers to be positive, so the true predictions should be all 1, and then I want to train this network such that it outputs all positive numbers. I am confused as how to formulate a loss function for this problem, so that I am able to back propagate and train the network.
Does anyone have an idea how to create this kind of network?

I am confused as how to formulate a loss function for this problem, so
that I am able to back propagate and train the network.
Here's how you should approach it. Effectively, you need to transform the labels to positive and negative target values (say +1 and -1) and solve the regression problem. The loss function can be a simple L1 or L2 loss. The network will try to learn to output a prediction close to the training target, which you can afterwards interpret if it's closer to one target or another, i.e. positive or negative. You can even go ahead and make some targets larger (e.g. +2 or +10) to emphasize that these examples are very important. Example code: linear regression in tensorflow.
However, I simply have to warn you that your approach has serious drawbacks, see for instance this question. One outlier in training data can easily skew your predictions. Classification with softmax + cross-entropy loss is more stable, that's why almost always a better choice.

Related

Numerically stable cross entropy loss calculation for Mixture of Experts model in Pytorch

I am stuck with a supposedly simple problem. I have a mixture of experts system, consisting of multiple neural networks for classification, whose mixture weights are determined by the data as well. For the posterior probability of label y, given data x and K different expert networks, we have:
In this scheme, p(y|z_k,x) are expert network posterior probabilities, which are Softmax functions applied to network outputs. p(z_k|x) are the network weights.
My problem is the following. Usually, in Pytorch we feed the outputs of the last layer (logits) into the cross entropy loss function. Pytorch handles the numerical stability issues with the Logsumexp trick (How is log_softmax() implemented to compute its value (and gradient) with better speed and numerical stability?). In my case here however, my model output is not the logits, the probabilities, directly instead, due to the nature of the mixture model. Taking the logarithm of the mixture probabilities and feeding into the NLL loss crashes after a couple of iterations since some probabilities quickly become very close to 0 and underflow-overflow issues start to appear. The calculation would be very unstable, numerically.
In this particular case, what would be the correct way to calculate CE (or NLL) loss, without losing the numerical stability?

What is a loss function in simple words?

Can anyone please explain in simple words and possibly with some examples what is a loss function in the field of machine learning/neural networks?
This came out while I was following a Tensorflow tutorial:
https://www.tensorflow.org/get_started/get_started
It describes how far off the result your network produced is from the expected result - it indicates the magnitude of error your model made on its prediciton.
You can then take that error and 'backpropagate' it through your model, adjusting its weights and making it get closer to the truth the next time around.
The loss function is how you're penalizing your output.
The following example is for a supervised setting i.e. when you know the correct result should be. Although loss functions can be applied even in unsupervised settings.
Suppose you have a model that always predicts 1. Just the scalar value 1.
You can have many loss functions applied to this model. L2 is the euclidean distance.
If I pass in some value say 2 and I want my model to learn the x**2 function then the result should be 4 (because 2*2 = 4). If we apply the L2 loss then its computed as ||4 - 1||^2 = 9.
We can also make up our own loss function. We can say the loss function is always 10. So no matter what our model outputs the loss will be constant.
Why do we care about loss functions? Well they determine how poorly the model did and in the context of backpropagation and neural networks. They also determine the gradients from the final layer to be propagated so the model can learn.
As other comments have suggested I think you should start with basic material. Here's a good link to start off with http://neuralnetworksanddeeplearning.com/
Worth to note we can speak of different kind of loss functions:
Regression loss functions and classification loss functions.
Regression loss function describes the difference between the values that a model is predicting and the actual values of the labels.
So the loss function has a meaning on a labeled data when we compare the prediction to the label at a single point of time.
This loss function is often called the error function or the error formula.
Typical error functions we use for regression models are L1 and L2, Huber loss, Quantile loss, log cosh loss.
Note: L1 loss is also know as Mean Absolute Error. L2 Loss is also know as Mean Square Error or Quadratic loss.
Loss functions for classification represent the price paid for inaccuracy of predictions in classification problems (problems of identifying which category a particular observation belongs to).
Name a few: log loss, focal loss, exponential loss, hinge loss, relative entropy loss and other.
Note: While more commonly used in regression, the square loss function can be re-written and utilized for classification.

how to train neural network with probabilistic input

Hello and thanks for helping,
My question is a long time problem that I try to tackle :
How do we train a neural network if the input is a probability rather than a value ?
To make it more intuitive :
Let's say we have 6 features and the value they may take is 1 or -1 for each.
Their value is determined probabilistically, such as the feature 1 can be 1 with 60% probability or -1 with 30% probability.
How do we train the network if in each trial, we may get a INPUT value in accordance with the probability distribution of each feature ?
Actually the answer is more straingthforward than you might expect, as many existing neural networks are actually trained exactly in this manner. You have to do ... nothing. Simply sample your batch in each iteration according to your distribution and that's all. Neural network does not require finite training set, thus you can efficiently train it on "potentialy ifinite" one (generator of samples). This is exactly what is being done in image processing with image augmentation - each batch consists random subsamples of the images (patches), which are sampled from very basic probability distributions.
#Nagabuhushan suggests solving different problem - where you know a priori probability of each sample, which, according to question is not the case:
we may get a INPUT value in accordance with the probability distribution of each feature
Plus, even if it would be the case, NNs are not good with multiplying thus one might need additional tweaking of architecture (log-transforms).
For the values you feed into the net, you should use the probabilities of each feature taking on the value 1. You could use the probabilities of them taking on -1, but be consistent. Also, determine some order of features and consistently order their probabilities, respectively.
Edit: I think I may have misunderstood the question. Do your inputs consist of probabilities, or 1's and -1's? If the latter, then a well-architected network should learn the distributions on its own. Just be sure to train it against the same input space that you'll be evaluating it against.

Why use softmax only in the output layer and not in hidden layers?

Most examples of neural networks for classification tasks I've seen use the a softmax layer as output activation function. Normally, the other hidden units use a sigmoid, tanh, or ReLu function as activation function. Using the softmax function here would - as far as I know - work out mathematically too.
What are the theoretical justifications for not using the softmax function as hidden layer activation functions?
Are there any publications about this, something to quote?
I haven't found any publications about why using softmax as an activation in a hidden layer is not the best idea (except Quora question which you probably have already read) but I will try to explain why it is not the best idea to use it in this case :
1. Variables independence : a lot of regularization and effort is put to keep your variables independent, uncorrelated and quite sparse. If you use softmax layer as a hidden layer - then you will keep all your nodes (hidden variables) linearly dependent which may result in many problems and poor generalization.
2. Training issues : try to imagine that to make your network working better you have to make a part of activations from your hidden layer a little bit lower. Then - automaticaly you are making rest of them to have mean activation on a higher level which might in fact increase the error and harm your training phase.
3. Mathematical issues : by creating constrains on activations of your model you decrease the expressive power of your model without any logical explaination. The strive for having all activations the same is not worth it in my opinion.
4. Batch normalization does it better : one may consider the fact that constant mean output from a network may be useful for training. But on the other hand a technique called Batch Normalization has been already proven to work better, whereas it was reported that setting softmax as activation function in hidden layer may decrease the accuracy and the speed of learning.
Actually, Softmax functions are already used deep within neural networks, in certain cases, when dealing with differentiable memory and with attention mechanisms!
Softmax layers can be used within neural networks such as in Neural Turing Machines (NTM) and an improvement of those which are Differentiable Neural Computer (DNC).
To summarize, those architectures are RNNs/LSTMs which have been modified to contain a differentiable (neural) memory matrix which is possible to write and access through time steps.
Quickly explained, the softmax function here enables a normalization of a fetch of the memory and other similar quirks for content-based addressing of the memory. About that, I really liked this article which illustrates the operations in an NTM and other recent RNN architectures with interactive figures.
Moreover, Softmax is used in attention mechanisms for, say, machine translation, such as in this paper. There, the Softmax enables a normalization of the places to where attention is distributed in order to "softly" retain the maximal place to pay attention to: that is, to also pay a little bit of attention to elsewhere in a soft manner. However, this could be considered like to be a mini-neural network that deals with attention, within the big one, as explained in the paper. Therefore, it could be debated whether or not Softmax is used only at the end of neural networks.
Hope it helps!
Edit - More recently, it's even possible to see Neural Machine Translation (NMT) models where only attention (with softmax) is used, without any RNN nor CNN: http://nlp.seas.harvard.edu/2018/04/03/attention.html
Use a softmax activation wherever you want to model a multinomial distribution. This may be (usually) an output layer y, but can also be an intermediate layer, say a multinomial latent variable z. As mentioned in this thread for outputs {o_i}, sum({o_i}) = 1 is a linear dependency, which is intentional at this layer. Additional layers may provide desired sparsity and/or feature independence downstream.
Page 198 of Deep Learning (Goodfellow, Bengio, Courville)
Any time we wish to represent a probability distribution over a discrete variable with n possible values, we may use the softmax function. This can be seen as a generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.
Softmax functions are most often used as the output of a classifier, to represent the probability distribution over n different classes. More rarely, softmax functions can be used inside the model itself, if we wish the model to choose between one of n different options for some internal variable.
Softmax function is used for the output layer only (at least in most cases) to ensure that the sum of the components of output vector is equal to 1 (for clarity see the formula of softmax cost function). This also implies what is the probability of occurrence of each component (class) of the output and hence sum of the probabilities(or output components) is equal to 1.
Softmax function is one of the most important output function used in deep learning within the neural networks (see Understanding Softmax in minute by Uniqtech). The Softmax function is apply where there are three or more classes of outcomes. The softmax formula takes the e raised to the exponent score of each value score and devide it by the sum of e raised the exponent scores values. For example, if I know the Logit scores of these four classes to be: [3.00, 2.0, 1.00, 0.10], in order to obtain the probabilities outputs, the softmax function can be apply as follows:
import numpy as np
def softmax(x):
z = np.exp(x - np.max(x))
return z / z.sum()
scores = [3.00, 2.0, 1.00, 0.10]
print(softmax(scores))
Output: probabilities (p) = 0.642 0.236 0.087 0.035
The sum of all probabilities (p) = 0.642 + 0.236 + 0.087 + 0.035 = 1.00. You can try to substitute any value you know in the above scores, and you will get a different values. The sum of all the values or probabilities will be equal to one. That’s makes sense, because the sum of all probability is equal to one, thereby turning Logit scores to probability scores, so that we can predict better. Finally, the softmax output, can help us to understand and interpret Multinomial Logit Model. If you like the thoughts, please leave your comments below.

Echo state neural network?

Is anyone here who is familiar with echo state networks? I created an echo state network in c#. The aim was just to classify inputs into GOOD and NOT GOOD ones. The input is an array of double numbers. I know that maybe for this classification echo state network isn't the best choice, but i have to do it with this method.
My problem is, that after training the network, it cannot generalize. When i run the network with foreign data (not the teaching input), i get only around 50-60% good result.
More details: My echo state network must work like a function approximator. The input of the function is an array of 17 double values, and the output is 0 or 1 (i have to classify the input into bad or good input).
So i have created a network. It contains an input layer with 17 neurons, a reservoir layer, which neron number is adjustable, and output layer containing 1 neuron for the output needed 0 or 1. In a simpler example, no output feedback is used (i tried to use output feedback as well, but nothing changed).
The inner matrix of the reservoir layer is adjustable too. I generate weights between two double values (min, max) with an adjustable sparseness ratio. IF the values are too big, it normlites the matrix to have a spectral radius lower then 1. The reservoir layer can have sigmoid and tanh activaton functions.
The input layer is fully connected to the reservoir layer with random values. So in the training state i run calculate the inner X(n) reservor activations with training data, collecting them into a matrix rowvise. Using the desired output data matrix (which is now a vector with 1 ot 0 values), i calculate the output weigths (from reservoir to output). Reservoir is fully connected to the output. If someone used echo state networks nows what im talking about. I ise pseudo inverse method for this.
The question is, how can i adjust the network so it would generalize better? To hit more than 50-60% of the desired outputs with a foreign dataset (not the training one). If i run the network again with the training dataset, it gives very good reults, 80-90%, but that i want is to generalize better.
I hope someone had this issue too with echo state networks.
If I understand correctly, you have a set of known, classified data that you train on, then you have some unknown data which you subsequently classify. You find that after training, you can reclassify your known data well, but can't do well on the unknown data. This is, I believe, called overfitting - you might want to think about being less stringent with your network, reducing node number, and/or training based on a hidden dataset.
The way people do it is, they have a training set A, a validation set B, and a test set C. You know the correct classification of A and B but not C (because you split up your known data into A and B, and C are the values you want the network to find for you). When training, you only show the network A, but at each iteration, to calculate success you use both A and B. So while training, the network tries to understand a relationship present in both A and B, by looking only at A. Because it can't see the actual input and output values in B, but only knows if its current state describes B accurately or not, this helps reduce overfitting.
Usually people seem to split 4/5 of data into A and 1/5 of it into B, but of course you can try different ratios.
In the end, you finish training, and see what the network will say about your unknown set C.
Sorry for the very general and basic answer, but perhaps it will help describe the problem better.
If your network doesn't generalize that means it's overfitting.
To reduce overfitting on a neural network, there are two ways:
get more training data
decrease the number of neurons
You also might think about the features you are feeding the network. For example, if it is a time series that repeats every week, then one feature is something like the 'day of the week' or the 'hour of the week' or the 'minute of the week'.
Neural networks need lots of data. Lots and lots of examples. Thousands. If you don't have thousands, you should choose a network with just a handful of neurons, or else use something else, like regression, that has fewer parameters, and is therefore less prone to overfitting.
Like the other answers here have suggested, this is a classic case of overfitting: your model performs well on your training data, but it does not generalize well to new test data.
Hugh's answer has a good suggestion, which is to reduce the number of parameters in your model (i.e., by shrinking the size of the reservoir), but I'm not sure whether it would be effective for an ESN, because the problem complexity that an ESN can solve grows proportional to the logarithm of the size of the reservoir. Reducing the size of your model might actually make the model not work as well, though this might be necessary to avoid overfitting for this type of model.
Superbest's solution is to use a validation set to stop training as soon as performance on the validation set stops improving, a technique called early stopping. But, as you noted, because you use offline regression to compute the output weights of your ESN, you cannot use a validation set to determine when to stop updating your model parameters---early stopping only works for online training algorithms.
However, you can use a validation set in another way: to regularize the coefficients of your regression! Here's how it works:
Split your training data into a "training" part (usually 80-90% of the data you have available) and a "validation" part (the remaining 10-20%).
When you compute your regression, instead of using vanilla linear regression, use a regularized technique like ridge regression, lasso regression, or elastic net regression. Use only the "training" part of your dataset for computing the regression.
All of these regularized regression techniques have one or more "hyperparameters" that balance the model fit against its complexity. The "validation" dataset is used to set these parameter values: you can do this using grid search, evolutionary methods, or any other hyperparameter optimization technique. Generally speaking, these methods work by choosing values for the hyperparameters, fitting the model using the "training" dataset, and measuring the fitted model's performance on the "validation" dataset. Repeat N times and choose the model that performs best on the "validation" set.
You can learn more about regularization and regression at http://en.wikipedia.org/wiki/Least_squares#Regularized_versions, or by looking it up in a machine learning or statistics textbook.
Also, read more about cross-validation techniques at http://en.wikipedia.org/wiki/Cross-validation_(statistics).

Resources