For studying deep learning, RNN, LSTM and so on I tried to make RNN fit integration function. I have put random signal from 0 to 1 as input to RNN and made integral from biased by -0.5 input signal, made the limit for integral between 0:1 and put it as RNN target to learn. Blue - random input, orange - integrated input
So I have time series with only one input (random) and one output (limited integral of input) and I want RNN to predict output by the input.
I used Pytorch and tried to use vanilla RNN, GRU cell, different sizes of hidden layers, stacking several RNN, putting dense connected layers to the RNN output, different deep in backpropagation through time (from 2 to 50 gradients rolling-back). And I can't get a good result at all! It works somehow, but I can't find a way to fit integral function precisely. Here is the best of my results:
green - RNN output. Green line (model output) does not fit orange line in many cases - that is the problem.
Here is my source code in jupyter.
My questions: is it possible - to learn a saturated integral function by RNN? Where is my problem? What can I try more to achieve good quality? Ideally I want to RNN output be equal desired output (integral function) through all time series.
PS:
My code in raw format:
import numpy as np
from scipy.stats import truncnorm
import random
import math
import copy
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.cm as cm
def generate_data(num_of_data):
input_data=[]
output_data=[]
current_input_value=0
current_output_value=0
for i in range(num_of_data):
if (random.random()<0.1):
current_input_value=random.random()
# current_output_value=0
current_input_value=current_input_value+(random.random()-0.5)*0
current_output_value=current_output_value+0.0*(current_input_value-current_output_value)+(current_input_value-0.5)*0.1
if (current_output_value<0):
current_output_value=0
if (current_output_value>1):
current_output_value=1
input_data.append(current_input_value)
output_data.append(current_output_value)
return input_data,output_data
%matplotlib inline
matplotlib.rcParams['figure.figsize'] = (20, 6)
input_data,output_data=generate_data(500)
plt.plot(input_data)
plt.plot(output_data)
plt.show()
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch import optim
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.number_of_layers=1
self.hidden_size = hidden_size
self.gru = nn.GRU(input_size, hidden_size,self.number_of_layers)
self.Dense1 = nn.Linear(hidden_size, hidden_size)
self.Dense1A = nn.ReLU()
self.Dense2 = nn.Linear(hidden_size, output_size)
def forward(self, input, hidden):
gru_output, hidden = self.gru(input, hidden)
Dense1Out=self.Dense1(gru_output)
Dense1OutAct=self.Dense1A(Dense1Out)
output=self.Dense2(Dense1OutAct)
return output, hidden
def initHidden(self):
return Variable(torch.zeros(self.number_of_layers,1,self.hidden_size))
import time
import math
import operator
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
rnn = RNN(1, 50, 1)
n_iters = 250000
print_every = 2000
plot_every = 2000
all_losses = []
total_loss_print = 0
total_loss_plot = 0
criterion=nn.L1Loss()
print("training...\n")
start = time.time()
optimizer = optim.Adam(rnn.parameters(), lr=0.0002)
rnn_hidden = rnn.initHidden()
rnn.zero_grad()
loss = 0
#for gata_q in range(int(n_iters/500)):
# rnn_hidden = rnn.initHidden()
input_data,output_data=generate_data(n_iters)
for data_index in range(len(input_data)):
input_tensor=torch.zeros(1, 1, 1)
input_tensor[0][0][0]=input_data[data_index]
output_tensor=torch.zeros(1, 1, 1)
output_tensor[0][0][0]=output_data[data_index]
rnn_output, rnn_hidden = rnn(Variable(input_tensor), rnn_hidden)
loss += criterion(rnn_output, Variable(output_tensor))
if data_index%2==0:
loss.backward()
total_loss_print += loss.data[0]
total_loss_plot += loss.data[0]
optimizer.step()
rnn_hidden=Variable(rnn_hidden.data)
rnn.zero_grad()
loss = 0
if data_index % print_every == 0:
print('%s (%d %d%%) tl=%.4f' % (timeSince(start), data_index, data_index / n_iters * 100,total_loss_print/print_every))
total_loss_print = 0
if data_index % plot_every == 0:
all_losses.append(total_loss_plot / plot_every)
total_loss_plot = 0
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
plt.figure()
plt.plot(all_losses)
plt.show()
rnn_hidden = rnn.initHidden()
rnn.zero_grad()
loss = 0
rnn_output_data=[]
input_data,output_data=generate_data(1500)
for data_index in range(len(input_data)):
input_tensor=torch.zeros(1, 1, 1)
input_tensor[0][0][0]=input_data[data_index]
rnn_output, rnn_hidden = rnn(Variable(input_tensor), rnn_hidden)
rnn_output_data.append(rnn_output.data.numpy()[0][0][0])
plt.plot(input_data)#blue
plt.plot(output_data)#ogange
plt.plot(rnn_output_data)#green
plt.show()
I have found the problem by myself. The problem was in some case of overfitting on latest data, as in reinforcement learning case overfitting can occur with exploiting latest strategy. As I was not using any mini-batches and applied optimiser directly after a new point of data, and as because of data points similar through 20-50 of samples, optimiser simply fitted network to only latest points forgetting of fitting previous. I solved it by collecting gradient data through time for 50 points and only after it I apply one step of optimiser. The network can learn now much better, but still not perfect.
Here is modification of code to make it work:
rnn_output, rnn_hidden = rnn(Variable(input_tensor), rnn_hidden)
loss += criterion(rnn_output, Variable(output_tensor))
if data_index % 2==0:
loss.backward()
total_loss_print += loss.data[0]
rnn_hidden=Variable(rnn_hidden.data)
loss = 0
# torch.nn.utils.clip_grad_norm(rnn.parameters(), 0.01)
if data_index % 50==0:
optimizer.step()
rnn.zero_grad()
and new result of learning of integral:
pic.
Related
I am trying regression using Gaussian processes sklearn package. The standard deviation on predictions are zero, where it must be larger.
kernel = ConstantKernel() + 1.0 * DotProduct() ** 0.3 + 1.0 * WhiteKernel()
gpr = GaussianProcessRegressor(
kernel=kernel,
alpha=0.3,
normalize_y=True,
random_state=123,
n_restarts_optimizer=0
)
gpr.fit(X_train, y_train)
Here I have shown the samples from posterior after training the model. It clearly shows the standard deviation increases along with x-axis.
This is the output I got. As the value increases along x-axis the stddev must increase, where as it is showing zero stddev.
Acutal results should look something like this.
Is it a bug ?
Full Code to reproduce the issue.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import ConstantKernel, WhiteKernel, DotProduct
df = pd.read_csv('train.csv')
X_train = df[:,0].to_numpy().reshape(-1,1)
y_train = df[:,1].to_numpy()
X_pred = np.linspace(0.01, 8.5, 1000).reshape(-1,1)
# Instantiate a Gaussian Process model
kernel = ConstantKernel() + 1.0 * DotProduct() ** 0.3 + 1.0 * WhiteKernel()
gpr = GaussianProcessRegressor(
kernel=kernel,
alpha=0.3,
normalize_y=True,
random_state=123,
n_restarts_optimizer=0
)
gpr.fit(X_train, y_train)
print(
f"Kernel parameters before fit:\n{kernel} \n"
f"Kernel parameters after fit: \n{gpr.kernel_} \n"
f"Log-likelihood: {gpr.log_marginal_likelihood(gpr.kernel_.theta):.3f} \n"
f"Score = {gpr.score(X_train,y_train)}"
)
n_samples = 10
y_samples = gpr.sample_y(X_pred, n_samples)
for idx, single_prior in enumerate(y_samples.T):
plt.plot(
X_pred,
single_prior,
linestyle="--",
alpha=0.7,
label=f"Sampled function #{idx + 1}",
)
plt.title('Sample from posterior distribution')
plt.show()
y_pred, sigma = gpr.predict(X_pred, return_std=True)
plt.figure(figsize=(10,6))
plt.plot(X_train, y_train, 'r.', markersize=3, label='Observations')
plt.plot(X_pred, y_pred, 'b-', label='Prediction',)
plt.fill_between(X_pred[:,0], y_pred-1*sigma, y_pred+1*sigma,
alpha=.4, fc='b', ec='None', label='68% confidence interval')
plt.fill_between(X_pred[:,0], y_pred-2*sigma, y_pred+2*sigma,
alpha=.3, fc='b', ec='None', label='95% confidence interval')
plt.fill_between(X_pred[:,0], y_pred-3*sigma, y_pred+3*sigma,
alpha=.1, fc='b', ec='None', label='99% confidence interval')
plt.legend()
plt.show()
Not really an answer but something to look out for that maybe it might help. I was having the same problem and had some results when changing the alpha, some kernel parameters or normalizing the data.
Probably it was due to a matter of scale (with big numbers, the std dev is too small in proportion)
With very few epochs this model learns to classify beween 1 and 0 extremely quickly which leads me to consider something is wrong.
Below code downloads mnist dataset, extracts the mnist images that contain 1 or 0 only. A random sample of size 200 is selected from this subset of mnist images. This random sample is the dataset the model is trained on. With just 2 epochs the model achieves 90%+ test set accuracy, is this expected behaviour ? I expected many more epochs would be required in order to train the model to achieve this level of test set accuracy.
Model code :
%reset -f
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import torch.utils.data as data_utils
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_moons
from matplotlib import pyplot
from pandas import DataFrame
import torchvision.datasets as dset
import os
import torch.nn.functional as F
import time
import random
import pickle
from sklearn.metrics import confusion_matrix
import pandas as pd
import sklearn
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))])
root = './data'
if not os.path.exists(root):
os.mkdir(root)
train_set = dset.MNIST(root=root, train=True, transform=trans, download=True)
test_set = dset.MNIST(root=root, train=False, transform=trans, download=True)
batch_size = 64
train_loader = torch.utils.data.DataLoader(
dataset=train_set,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(
dataset=test_set,
batch_size=batch_size,
shuffle=True)
class NeuralNet(nn.Module):
def __init__(self):
super(NeuralNet, self).__init__()
self.fc1 = nn.Linear(28*28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 2)
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
num_epochs = 2
random_sample_size = 200
values_0_or_1 = [t for t in train_set if (int(t[1]) == 0 or int(t[1]) == 1)]
values_0_or_1_testset = [t for t in test_set if (int(t[1]) == 0 or int(t[1]) == 1)]
print(len(values_0_or_1))
print(len(values_0_or_1_testset))
train_loader_subset = torch.utils.data.DataLoader(
dataset=values_0_or_1,
batch_size=batch_size,
shuffle=True)
test_loader_subset = torch.utils.data.DataLoader(
dataset=values_0_or_1_testset,
batch_size=batch_size,
shuffle=False)
train_loader = train_loader_subset
# Hyper-parameters
input_size = 100
hidden_size = 100
num_classes = 2
# learning_rate = 0.00001
learning_rate = .0001
# Device configuration
device = 'cpu'
print_progress_every_n_epochs = 1
model = NeuralNet().to(device)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
N = len(train_loader)
# Train the model
total_step = len(train_loader)
most_recent_prediction = []
test_actual_predicted_dict = {}
rm = random.sample(list(values_0_or_1), random_sample_size)
train_loader_subset = data_utils.DataLoader(rm, batch_size=4)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader_subset):
# Move tensors to the configured device
images = images.reshape(-1, 2).to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch) % print_progress_every_n_epochs == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
predicted_test = []
model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance)
probs_l = []
predicted_values = []
actual_values = []
labels_l = []
with torch.no_grad():
for images, labels in test_loader_subset:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
predicted_test.append(predicted.cpu().numpy())
sm = torch.nn.Softmax()
probabilities = sm(outputs)
probs_l.append(probabilities)
labels_l.append(labels.cpu().numpy())
predicted_values.append(np.concatenate(predicted_test).ravel())
actual_values.append(np.concatenate(labels_l).ravel())
if (epoch) % 1 == 0:
print('test accuracy : ', 100 * len((np.where(np.array(predicted_values[0])==(np.array(actual_values[0])))[0])) / len(actual_values[0]))
Output of model (12665 & 2115 represents the training and test set sizes) :
12665
2115
Epoch [1/2], Step [50/198], Loss: 0.1256
Epoch [2/2], Step [50/198], Loss: 0.0151
test accuracy : 99.76359338061465
/anaconda3/envs/pytorch/lib/python3.7/site-packages/ipykernel_launcher.py:143: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
Here's my 2 cents on your binary experiment.
It would seem like you have severely reduce the complexity of your dataset and with the high number of neurons in your intermediate layers, your model is expected to converge very quickly.
Note that MNIST dataset has channel of 1 and this makes the task very simple.
You may try to play with CIFAR10 and see if you are still getting high accuracy in just 2 epochs.
That's not a particularly well-posed question, because what is expected is entirely subjective. That being said, I am not surprised because 0 and 1 are very different digits. For instance, 0 has background surrounded by foreground, whereas 1 does not - that's an almost infallible test to distinguish the two. As a sanity check, I would swap out 0 for 7, which is similar to 1. I would expect to see significantly lower success rate. That being said, that's a sanity check - even if it passes, there may still be bugs or errors in your method.
So this question is about GANs.
I am trying to do a trivial example for my own proof of concept; namely, generate images of hand written digits (MNIST). While most will approach this via deep convolutional gans (dgGANs), I am just trying to achieve this via the 1D array (i.e. instead of 28x28 gray-scale pixel values, a 28*28 1d array).
This git repo features a "vanilla" gans which treats the MNIST dataset as a 1d array of 784 values. Their output values look pretty acceptable so I wanted to do something similar.
Import statements
from __future__ import print_function
import matplotlib as mpl
from matplotlib import pyplot as plt
import mxnet as mx
from mxnet import nd, gluon, autograd
from mxnet.gluon import nn, utils
import numpy as np
import os
from math import floor
from random import random
import time
from datetime import datetime
import logging
ctx = mx.gpu()
np.random.seed(3)
Hyper parameters
batch_size = 100
epochs = 100
generator_learning_rate = 0.001
discriminator_learning_rate = 0.001
beta1 = 0.5
latent_z_size = 100
Load data
mnist = mx.test_utils.get_mnist()
# convert imgs to arrays
flattened_training_data = mnist["test_data"].reshape(10000, 28*28)
define models
G = nn.Sequential()
with G.name_scope():
G.add(nn.Dense(300, activation="relu"))
G.add(nn.Dense(28 * 28, activation="tanh"))
D = nn.Sequential()
with D.name_scope():
D.add(nn.Dense(128, activation="relu"))
D.add(nn.Dense(64, activation="relu"))
D.add(nn.Dense(32, activation="relu"))
D.add(nn.Dense(2, activation="tanh"))
loss = gluon.loss.SoftmaxCrossEntropyLoss()
init stuff
G.initialize(mx.init.Normal(0.02), ctx=ctx)
D.initialize(mx.init.Normal(0.02), ctx=ctx)
trainer_G = gluon.Trainer(G.collect_params(), 'adam', {"learning_rate": generator_learning_rate, "beta1": beta1})
trainer_D = gluon.Trainer(D.collect_params(), 'adam', {"learning_rate": discriminator_learning_rate, "beta1": beta1})
metric = mx.metric.Accuracy()
dynamic plot (for juptyer notebook)
import matplotlib.pyplot as plt
import time
def dynamic_line_plt(ax, y_data, colors=['r', 'b', 'g'], labels=['Line1', 'Line2', 'Line3']):
x_data = []
y_max = 0
y_min = 0
x_min = 0
x_max = 0
for y in y_data:
x_data.append(list(range(len(y))))
if max(y) > y_max:
y_max = max(y)
if min(y) < y_min:
y_min = min(y)
if len(y) > x_max:
x_max = len(y)
ax.set_ylim(y_min, y_max)
ax.set_xlim(x_min, x_max)
if ax.lines:
for i, line in enumerate(ax.lines):
line.set_xdata(x_data[i])
line.set_ydata(y_data[i])
else:
for i in range(len(y_data)):
l = ax.plot(x_data[i], y_data[i], colors[i], label=labels[i])
ax.legend()
fig.canvas.draw()
train
stamp = datetime.now().strftime('%Y_%m_%d-%H_%M')
logging.basicConfig(level=logging.DEBUG)
# arrays to store data for plotting
loss_D = nd.array([0], ctx=ctx)
loss_G = nd.array([0], ctx=ctx)
acc_d = nd.array([0], ctx=ctx)
labels = ['Discriminator Loss', 'Generator Loss', 'Discriminator Acc.']
%matplotlib notebook
fig, ax = plt.subplots(1, 1)
ax.set_xlabel('Time')
ax.set_ylabel('Loss')
dynamic_line_plt(ax, [loss_D.asnumpy(), loss_G.asnumpy(), acc_d.asnumpy()], labels=labels)
for epoch in range(epochs):
tic = time.time()
data_iter.reset()
for i, batch in enumerate(data_iter):
####################################
# Update Disriminator: maximize log(D(x)) + log(1-D(G(z)))
####################################
# extract batch of real data
data = batch.data[0].as_in_context(ctx)
# add noise
# Produce our noisey input to the generator
latent_z = mx.nd.random_normal(0,1,shape=(batch_size, latent_z_size), ctx=ctx)
# soft and noisy labels
# real_label = mx.nd.ones((batch_size, ), ctx=ctx) * nd.random_uniform(.7, 1.2, shape=(1)).asscalar()
# fake_label = mx.nd.ones((batch_size, ), ctx=ctx) * nd.random_uniform(0, .3, shape=(1)).asscalar()
# real_label = nd.random_uniform(.7, 1.2, shape=(batch_size), ctx=ctx)
# fake_label = nd.random_uniform(0, .3, shape=(batch_size), ctx=ctx)
real_label = mx.nd.ones((batch_size, ), ctx=ctx)
fake_label = mx.nd.zeros((batch_size, ), ctx=ctx)
with autograd.record():
# train with real data
real_output = D(data)
errD_real = loss(real_output, real_label)
# train with fake data
fake = G(latent_z)
fake_output = D(fake.detach())
errD_fake = loss(fake_output, fake_label)
errD = errD_real + errD_fake
errD.backward()
trainer_D.step(batch_size)
metric.update([real_label, ], [real_output,])
metric.update([fake_label, ], [fake_output,])
####################################
# Update Generator: maximize log(D(G(z)))
####################################
with autograd.record():
output = D(fake)
errG = loss(output, real_label)
errG.backward()
trainer_G.step(batch_size)
####
# Plot Loss
####
# append new data to arrays
loss_D = nd.concat(loss_D, nd.mean(errD), dim=0)
loss_G = nd.concat(loss_G, nd.mean(errG), dim=0)
name, acc = metric.get()
acc_d = nd.concat(acc_d, nd.array([acc], ctx=ctx), dim=0)
# plot array
dynamic_line_plt(ax, [loss_D.asnumpy(), loss_G.asnumpy(), acc_d.asnumpy()], labels=labels)
name, acc = metric.get()
metric.reset()
logging.info('Binary training acc at epoch %d: %s=%f' % (epoch, name, acc))
logging.info('time: %f' % (time.time() - tic))
output
img = G(mx.nd.random_normal(0,1,shape=(100, latent_z_size), ctx=ctx))[0].reshape((28, 28))
plt.imshow(img.asnumpy(),cmap='gray')
plt.show()
Now this doesn't get nearly as good as the repo's example from above. Although fairly similar.
Thus I was wondering if you could take a look and figure out why:
the colors are inverted
why the results are sub par
I have been fiddling around with this trying a lot of various things to improve the results (I will list this in a second), but for the MNIST dataset this really shouldn't be needed.
Things I have tried (and I have also tried a host of combinations):
increasing the generator network
increasing the discriminator network
using soft labeling
using noisy labeling
batch norm after every layer in the generator
batch norm of the data
normalizing all values between -1 and 1
leaky relus in the generator
drop out layers in the generator
increased learning rate of discriminator compared to generator
decreased learning rate of i compared to generator
Please let me know if you have any ideas.
1) If you look into original dataset:
training_set = mnist["train_data"].reshape(60000, 28, 28)
plt.imshow(training_set[10,:,:], cmap='gray')
you will notice that the digits are white on a black background. So, technically speaking, your results are not inversed - they match the pattern of original images you used as a real data.
If you want to invert colors for visualization purposes, you can easily do that by changing the pallete to reversed one by adding '_r' (it works for all color palletes):
plt.imshow(img.asnumpy(), cmap='gray_r')
You also can play with ranges of colors by changing vmin and vmax parameters. They control how big the difference between colors should be. By default it is calculated automatically based on provided set.
2) "Why the results are sub par" - I think this is exactly the reason why the community started to use dcGANs. To me the results in the git repo you provided are quite noisy. Surely, they are different from what you receive, and you can achieve the same quality just by changing your activation functions from tanh to sigmoid as in the example on github:
G = nn.Sequential()
with G.name_scope():
G.add(nn.Dense(300, activation="relu"))
G.add(nn.Dense(28 * 28, activation="sigmoid"))
D = nn.Sequential()
with D.name_scope():
D.add(nn.Dense(128, activation="relu"))
D.add(nn.Dense(64, activation="relu"))
D.add(nn.Dense(32, activation="relu"))
D.add(nn.Dense(2, activation="sigmoid"))
Sigmoid never goes below zero and it works better in this scenario. Here is a sample picture I get if I train updated model for 30 epochs (the rest of the hyperparameters are same).
If you decide to explore dcGAN to get even better results, take a look here - https://mxnet.incubator.apache.org/tutorials/unsupervised_learning/gan.html It is a well explained tutorial on how to build dcGAN with Mxnet and Gluon. By using dcGAN you will get way better results than that.
Consider this minimal runnable example:
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import numpy as np
import matplotlib.pyplot as plt
max = 30
step = 0.5
n_steps = int(30/0.5)
x = np.arange(0,max,step)
x = np.cos(x)*(max-x)/max
y = np.roll(x,-1)
y[-1] = x[-1]
shape = (n_steps,1,1)
batch_shape = (1,1,1)
x = x.reshape(shape)
y = y.reshape(shape)
model = Sequential()
model.add(LSTM(50, return_sequences=True, stateful=True, batch_input_shape=batch_shape))
model.add(LSTM(50, return_sequences=True, stateful=True))
model.add(Dense(1))
model.compile(loss='mse', optimizer='rmsprop')
for i in range(1000):
model.reset_states()
model.fit(x,y,nb_epoch=1, batch_size=1)
p = model.predict(x, batch_size=1)
plt.clf()
plt.axis([-1,31, -1.1, 1.1])
plt.plot(x[:, 0, 0], '*')
plt.plot(y[:,0,0],'o')
plt.plot(p[:,0,0],'.')
plt.draw()
plt.pause(0.001)
As stated in the keras API https://keras.io/layers/recurrent/
the last state for each sample at index i in a batch will be used as
initial state for the sample of index i in the following batch
So I'm using batch_size = 1 and I'm trying to predict the next value in the decaying cos-function for each timestep. The prediction, or the red dots in the picture below should go into the green circles for the script to predict it correctly, however it doesn't converge... Have any idea to make it learn?
The problem lied in a calling model.fit for each epoch separately. In this case optimizer parameters are reset what was harmful for a training process. Other thing is calling reset_states also before prediction - as if it wasn't called - the states from fit are starting states for prediction what also might be harmful. The final code is following:
for epoch in range(1000):
model.reset_states()
tot_loss = 0
for batch in range(n_steps):
batch_loss = model.train_on_batch(x[batch:batch+1], y[batch:batch+1])
tot_loss+=batch_loss
print "Loss: " + str(tot_loss/float(n_steps))
model.reset_states()
p = model.predict(x, batch_size=1)
I am trying to use LSTM Recurrent Neural Net using Keras to forecast future purchase. My input variables are time-window of purchases for previous 5 days, and a categorical variable which I encoded as dummy variables A, B, ...,I. My input data looks like following:
>>> dataframe.head()
day price A B C D E F G H I TS_bigHolidays
0 2015-06-16 7.031160 1 0 0 0 0 0 0 0 0 0
1 2015-06-17 10.732429 1 0 0 0 0 0 0 0 0 0
2 2015-06-18 21.312692 1 0 0 0 0 0 0 0 0 0
My problem is my forecasts/fitted values (both for trained and test data) seem to be shifted forward. Here is a plot:
My question is what parameter in LSTM Keras should I change to correct this issue? Or do I need to change anything in my input data?
Here is my code:
import numpy as np
import os
import matplotlib.pyplot as plt
import pandas
import math
import time
import csv
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.layers.recurrent import LSTM
from sklearn.preprocessing import MinMaxScaler
np.random.seed(1234)
exo_feature = ["A","B","C","D","E","F","G","H","I", "TS_bigHolidays"]
look_back = 5 #this is number of days we are looking back for sliding window of time series
forecast_period_length = 40
# load the dataset
dataframe = pandas.read_csv('processedDataframeGameSphere.csv', header = 0, engine='python', skipfooter=6)
dataframe["price"] = dataframe['price'].astype('float32')
scaler = MinMaxScaler(feature_range=(0, 100))
dataframe["price"] = scaler.fit_transform(dataframe['price'])
# this function is used to make sliding window for time series data
def create_dataframe(dataframe, look_back=1):
dataX, dataY = [], []
for i in range(dataframe.shape[0]-look_back-1):
price_lookback = dataframe['price'][i: (i + look_back)] #i+look_back is exclusive here
exog_feature = dataframe[exo_feature].ix[i + look_back - 1] #Y is i+ look_back ,that's why
row_i = price_lookback.append(exog_feature)
dataX.append(row_i)
dataY.append(dataframe["price"][i + look_back])
return np.array(dataX), np.array(dataY)
window_dataframe, Y = create_dataframe(dataframe, look_back)
# split into train and test sets
train_size = int(dataframe.shape[0] - forecast_period_length) #28 is the number of days we want to forecast , 4 weeks
test_size = dataframe.shape[0] - train_size
test_size_start_point_with_lookback = train_size - look_back
trainX, trainY = window_dataframe[0:train_size,:], Y[0:train_size]
print(trainX.shape)
print(trainY.shape)
#below changed datawindowY indexing, since it's just array.
testX, testY = window_dataframe[train_size:dataframe.shape[0],:], Y[train_size:dataframe.shape[0]]
# reshape input to be [samples, time steps, features]
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
print(trainX.shape)
print(testX.shape)
# create and fit the LSTM network
dimension_input = testX.shape[2]
model = Sequential()
layers = [dimension_input, 50, 100, 1]
epochs = 100
model.add(LSTM(
input_dim=layers[0],
output_dim=layers[1],
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(
layers[2],
return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(
output_dim=layers[3]))
model.add(Activation("linear"))
start = time.time()
model.compile(loss="mse", optimizer="rmsprop")
print "Compilation Time : ", time.time() - start
model.fit(
trainX, trainY,
batch_size= 10, nb_epoch=epochs, validation_split=0.05,verbose =2)
# Estimate model performance
trainScore = model.evaluate(trainX, trainY, verbose=0)
trainScore = math.sqrt(trainScore)
trainScore = scaler.inverse_transform(np.array([[trainScore]]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = model.evaluate(testX, testY, verbose=0)
testScore = math.sqrt(testScore)
testScore = scaler.inverse_transform(np.array([[testScore]]))
print('Test Score: %.2f RMSE' % (testScore))
# generate predictions for training
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
# shift train predictions for plotting
np_price = np.array(dataframe["price"])
print(np_price.shape)
np_price = np_price.reshape(np_price.shape[0],1)
trainPredictPlot = np.empty_like(np_price)
trainPredictPlot[:, :] = np.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict
testPredictPlot = np.empty_like(np_price)
testPredictPlot[:, :] = np.nan
testPredictPlot[len(trainPredict)+look_back+1:dataframe.shape[0], :] = testPredict
# plot baseline and predictions
plt.plot(dataframe["price"])
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()
It's not a problem of LSTM, if you use just simple feed-forward network, the effect will be the same.
the problem is the network tend to mimic yesterday value instead of 'forecasting' you expect.
(it is nice strategy in term of reducing MSE loss)
you need more 'care' to avoid this issue and it's not a simple issue.