Nested Grammars in Compiler Design - parsing

This seems like a simple question, but I could not find a good explanation of this anywhere. How do you handle nested grammars [cfgs] (aka. grammars referencing other grammars.) For example,
S => Eb
E => cA
Separate Grammar:
A => d
Is this possible? If not, how does one approach dealing with this. For grammars, like variable declaration, is it necessary to simply rewrite the expression grammars associated with the main grammar or can they be referenced from it? If so, how does one integrate this feature into an LL(1) parser properly.
Thanks.

I believe your question is dealing with the physical separation, in which case you could merge all together to form a complete main grammar.
Conceptually, a grammar with missing rules would be considered incoherent and invalid.

Related

Can this be parsed by a LALR(1) parser?

I am writing a parser in Bison for a language which has the following constructs, among others:
self-dispatch: [identifier arguments]
dispatch: [expression . identifier arguments]
string slicing: expression[expression,expression] - similar to Python.
arguments is a comma-separated list of expressions, which can be empty too. All of the above are expressions on their own, too.
My problem is that I am not sure how to parse both [method [other_method]] and [someString[idx1, idx2].toInt] or if it is possible to do this at all with an LALR(1) parser.
To be more precise, let's take the following example: [a[b]] (call method a with the result of method b). When it reaches the state [a . [b]] (the lookahead is the second [), it won't know whether to reduce a (which has already been reduced to identifier) to expression because something like a[b,c] might follow (which could itself be reduced to expression and continue with the second construct from above) or to keep it identifier (and shift it) because a list of arguments will follow (such as [b] in this case).
Is this shift/reduce conflict due to the way I expressed this grammar or is it not possible to parse all of these constructs with an LALR(1) parser?
And, a more general question, how can one prove that a language is/is not parsable by a particular type of parser?
Assuming your grammar is unambiguous (which the part you describe appears to be) then your best bet is to specify a %glr-parser. Since in most cases, the correct parse will be forced after only a few tokens, the overhead should not be noticeable, and the advantage is that you do not need to complicate either the grammar or the construction of the AST.
The one downside is that bison cannot verify that the grammar is unambiguous -- in general, this is not possible -- and it is not easy to prove. If it turns out that some input is ambiguous, the GLR parser will generate an error, so a good test suite is important.
Proving that the language is not LR(1) would be tricky, and I suspect that it would be impossible because the language probably is recognizable with an LALR(1) parser. (Impossible to tell without seeing the entire grammar, though.) But parsing (outside of CS theory) needs to create a correct parse tree in order to be useful, and the sort of modifications required to produce an LR grammar will also modify the AST, requiring a post-parse fixup. The difficultly in creating a correct AST spring from the difference in precedence between
a[b[c],d]
and
[a[b[c],d]]
In the first (subset) case, b binds to its argument list [c] and the comma has lower precedence; in the end, b[c] and d are sibling children of the slice. In the second case (method invocation), the comma is part of the argument list and binds more tightly than the method application; b, [c] and d are siblings in a method application. But you cannot decide the shape of the parse tree until an arbitrarily long input (since d could be any expression).
That's all a bit hand-wavey since "precedence" is not formally definable, and there are hacks which could make it possible to adjust the tree. Since the LR property is not really composable, it is really possible to provide a more rigorous analysis. But regardless, the GLR parser is likely to be the simplest and most robust solution.
One small point for future reference: CFGs are not just a programming tool; they also serve the purpose of clearly communicating the grammar in question. Nirmally, if you want to describe your language, you are better off using a clear CFG than trying to describe informally. Of course, meaningful non-terminal names will help, and a few examples never hurt, but the essence of the grammar is in the formal description and omitting that makes it harder for others to "be helpful".

Writing correct LL(1) grammars?

I'm currently trying to write a (very) small interpreter/compiler for a programming language. I have set the syntax for the language, and I now need to write down the grammar for the language. I intend to use an LL(1) parser because, after a bit of research, it seems that it is the easiest to use.
I am new to this domain, but from what I gathered, formalising the syntax using BNF or EBNF is highly recommended. However, it seems that not all grammars are suitable for implementation using an LL(1) parser. Therefore, I was wondering what was the correct (or recommended) approach to writing grammars in LL(1) form.
Thank you for your help,
Charlie.
PS: I intend to write the parser using Haskell's Parsec library.
EDIT: Also, according to SK-logic, Parsec can handle an infinite lookahead (LL(k) ?) - but I guess the question still stands for that type of grammar.
I'm not an expert on this as I have only made a similar small project with an LR(0) parser. The general approach I would recommend:
Get the arithmetics working. By this, make rules and derivations for +, -, /, * etc and be sure that the parser produces a working abstract syntax tree. Test and evaluate the tree on different input to ensure that it does the arithmetic correctly.
Make things step by step. If you encounter any conflict, resolve it first before moving on.
Get simper constructs working like if-then-else or case expressions working.
Going further depends more on the language you're writing the grammar for.
Definetly check out other programming language grammars as an reference (unfortunately I did not find in 1 min any full LL grammar for any language online, but LR grammars should be useful as an reference too). For example:
ANSI C grammar
Python grammar
and of course some small examples in Wikipedia about LL grammars Wikipedia LL Parser that you probably have already checked out.
I hope you find some of this stuff useful
There are algorithms both for determining if a grammar is LL(k). Parser generators implement them. There are also heuristics for converting a grammar to LL(k), if possible.
But you don't need to restrict your simple language to LL(1), because most modern parser generators (JavaCC, ANTLR, Pyparsing, and others) can handle any k in LL(k).
More importantly, it is very likely that the syntax you consider best for your language requires a k between 2 and 4, because several common programming constructs do.
So first off, you don't necessarily want your grammar to be LL(1). It makes writing a parser simpler and potentially offers better performance, but it does mean that you're language will likely end up more verbose than commonly used languages (which generally aren't LL(1)).
If that's ok, your next step is to mentally step through the grammar, imagine all possibilities that can appear at that point, and check if they can be distinguished by their first token.
There's two main rules of thumb to making a grammar LL(1)
If of multiple choices can appear at a given point and they can
start with the same token, add a keyword in front telling you which
choice was taken.
If you have an optional or repeated part, make
sure it is followed by an ending token which can't appear as the first token of the optional/repeated part.
Avoid optional parts at the beginning of a production wherever possible. It makes the first two steps a lot easier.

If the grammar is ambiguous then there exists exactly one handle for each sentential form.?

there can be two productions from which we can do the reduction. After giving precedence and associations as required there will be one handle only.so is this statement true??
This is partially true, a reduce/reduce conflict is usually resolved by specifying precedence or by letting the parser builder choose which rule to apply before the other.
This means that the conflict is solved but not that the parser is going to behave exactly as intended. It is convenient to study what is causing the conflict and think if a refactoring of the grammar is needed to express what you are trying to parse or if the automatic choice/precedence is enough.
If you have a grammar which has ambiguous rules, you get multiple interpretations. You don't have to insist that the grammar removes ambiguity; you can simply agree that something is ambiguous and parse it multiple ways:
fruit flies like an arrow.
The result of the parse is multiple interpretations.
Now, for such a language to be useful to a reader, either he has to be happy with the ambiguity, or you need to give him a way to resolve it. (In the example, I've decided for you that you are happy the ambiguity, because I haven't given you a way to resolve it!). Or, one can provide the reader of something with ambiguous parsess, a way to choose which parse make sense, and he rejects the inappropriate parses.
I can do that for the above case by telling you that I mean "fruit => watermelon".
Computer grammars are not different, but most programmers don't want ambiguous code. So in general, langauge designers like to define unambiguous grammars. In practice, they don't succeed and you get funny language rules like, "If this could be interpreted ambiguously, then interpret it this way.".

Parsing rules - how to make them play nice together

So I'm doing a Parser, where I favor flexibility over speed, and I want it to be easy to write grammars for, e.g. no tricky workaround rules (fake rules to solve conflicts etc, like you have to do in yacc/bison etc.)
There's a hand-coded Lexer with a fixed set of tokens (e.g. PLUS, DECIMAL, STRING_LIT, NAME, and so on) right now there are three types of rules:
TokenRule: matches a particular token
SequenceRule: matches an ordered list of rules
GroupRule: matches any rule from a list
For example, let's say we have the TokenRule 'varAccess', which matches token NAME (roughly /[A-Za-z][A-Za-z0-9_]*/), and the SequenceRule 'assignment', which matches [expression, TokenRule(PLUS), expression].
Expression is a GroupRule matching either 'assignment' or 'varAccess' (the actual ruleset I'm testing with is a bit more complete, but that'll do for the example)
But now let's say I want to parse
var1 = var2
And let's say the Parser begins with rule Expression (the order in which they are defined shouldn't matter - priorities will be solved later). And let's say the GroupRule expression will first try 'assignment'. Then since 'expression' is the first rule to be matched in 'assignment', it will try to parse an expression again, and so on until the stack is filled up and the computer - as expected - simply gives up in a sparkly segfault.
So what I did is - SequenceRules add themselves as 'leafs' to their first rule, and become non-roôt rules. Root rules are rules that the parser will first try. When one of those is applied and matches, it tries to subapply each of its leafs, one by one, until one matches. Then it tries the leafs of the matching leaf, and so on, until nothing matches anymore.
So that it can parse expressions like
var1 = var2 = var3 = var4
Just right =) Now the interesting stuff. This code:
var1 = (var2 + var3)
Won't parse. What happens is, var1 get parsed (varAccess), assign is sub-applied, it looks for an expression, tries 'parenthesis', begins, looks for an expression after the '(', finds var2, and then chokes on the '+' because it was expecting a ')'.
Why doesn't it match the 'var2 + var3' ? (and yes, there's an 'add' SequenceRule, before you ask). Because 'add' isn't a root rule (to avoid infinite recursion with the parse-expresssion-beginning-with-expression-etc.) and that leafs aren't tested in SequenceRules otherwise it would parse things like
reader readLine() println()
as
reader (readLine() println())
(e.g. '1 = 3' is the expression expected by add, the leaf of varAccess a)
whereas we'd like it to be left-associative, e.g. parsing as
(reader readLine()) println()
So anyway, now we've got this problem that we should be able to parse expression such as '1 + 2' within SequenceRules. What to do? Add a special case that when SequenceRules begin with a TokenRule, then the GroupRules it contains are tested for leafs? Would that even make sense outside that particular example? Or should one be able to specify in each element of a SequenceRule if it should be tested for leafs or not? Tell me what you think (other than throw away the whole system - that'll probably happen in a few months anyway)
P.S: Please, pretty please, don't answer something like "go read this 400pages book or you don't even deserve our time" If you feel the need to - just refrain yourself and go bash on reddit. Okay? Thanks in advance.
LL(k) parsers (top down recursive, whether automated or written by hand) require refactoring of your grammar to avoid left recursion, and often require special specifications of lookahead (e.g. ANTLR) to be able to handle k-token lookahead. Since grammars are complex, you get to discover k by experimenting, which is exactly the thing you wish to avoid.
YACC/LALR(1) grammars aviod the problem of left recursion, which is a big step forward. The bad news is that there are no real programming langauges (other than Wirth's original PASCAL) that are LALR(1). Therefore you get to hack your grammar to change it from LR(k) to LALR(1), again forcing you to suffer the experiments that expose the strange cases, and hacking the grammar reduction logic to try to handle K-lookaheads when the parser generators (YACC, BISON, ... you name it) produce 1-lookahead parsers.
GLR parsers (http://en.wikipedia.org/wiki/GLR_parser) allow you to avoid almost all of this nonsense. If you can write a context free parser, under most practical circumstances, a GLR parser will parse it without further effort. That's an enormous relief when you try to write arbitrary grammars. And a really good GLR parser will directly produce a tree.
BISON has been enhanced to do GLR parsing, sort of. You still have to write complicated logic to produce your desired AST, and you have to worry about how to handle failed parsers and cleaning up/deleting their corresponding (failed) trees. The DMS Software Reengineering Tookit provides standard GLR parsers for any context free grammar, and automatically builds ASTs without any additional effort on your part; ambiguous trees are automatically constructed and can be cleaned up by post-parsing semantic analyis. We've used this to do define 30+ language grammars including C, including C++ (which is widely thought to be hard to parse [and it is almost impossible to parse with YACC] but is straightforward with real GLR); see C+++ front end parser and AST builder based on DMS.
Bottom line: if you want to write grammar rules in a straightforward way, and get a parser to process them, use GLR parsing technology. Bison almost works. DMs really works.
My favourite parsing technique is to create recursive-descent (RD) parser from a PEG grammar specification. They are usually very fast, simple, and flexible. One nice advantage is you don't have to worry about separate tokenization passes, and worrying about squeezing the grammar into some LALR form is non-existent. Some PEG libraries are listed [here][1].
Sorry, I know this falls into throw away the system, but you are barely out of the gate with your problem and switching to a PEG RD parser, would just eliminate your headaches now.

When is an ambiguous grammar or production rule OK? (bison shift/reduce warnings)

There are certainly plenty of docs and howtos on resolving shift/reduce errors. The bison docs suggest the correct solution is usually to just %expect them and deal with it.
When you have things like this:
S: S 'b' S | 't'
You can easily resolve them like this:
S: S 'b' T | T
T: 't'
My question is: Is it better to leave the grammar a touch ambiguous and %expect shift/reduce problems or is it better to try to adjust the grammar to avoid them? I suspect there is a balance and it's based on the needs of the author, but I don't really know.
As I read it, Your question is "When is an ambiguous grammar or production rule OK?"
First consider the language you are describing. What would be the implication of allowing an ambiguous production rule into the language.
Your example describes a language which might include an expression like: t b t b t b t
The expression, resolved as in your second example would be (((( t ) b t) b t ) b t ) but in an ambiguous grammer it could also become ( t b ( t b ( t b ( t)))) or even ( t b t ) b ( t b t ). Which could be valid might depend on the language. If the b operator models subtraction, it really shouldn't be ambiguous, but if it was addition, it might be ok. This really depends on the language.
The second question to consider is what the resulting grammar source file ends up looking like, after the conflicts are resolved. As with other source code, a grammar is meant to be read by humans, and secondarily also by computers. Prefer a notation that gives a clearer explanation of what the parser is trying to do from the grammar. That is, if the parser is executing some possibly undefined behavior, for example, order of evaluation of a function's arguments in an eager language, make the grammar look ambiguous.
You can guide the conflict resolution with operator precedence. Declare 'b' as an left- or right-associative operator and you have covered at least that case.
For more complex patterns, as long as the final parser produces the correct result in all cases, the warnings isn't much to worry about. Though if you can't get it to give the correct result using declarations you would have to rewrite the grammar.
In my compiler course last semester we used bison, and built a compiler for a subset of pascal.
If the language is complex enough, you will have some errors. As long as you understand why they are there, and what you'd have to do to remove them, we found it to be alright. If something was there, but due to the behaviour would work as we wanted it to, and would require much to much thought and work to make it worth while (and also complicating the grammar), we left it alone. Just make sure you fully understand the error, and document it somewhere (even for yourself), so that you always know what's going on with it.
It's a cost/benefit analysis once things get really involved, but IMHO, fixing it should be considered FIRST, then actually figure out what the work would be (and if that work breaks something else, or makes something else harder), and go from there. Never pass them off as commonplace.
When I need to prove that a grammar is unambiguous, I tend to write it first as a Parsing Expression Grammar, and then convert it by hand to whatever grammar type the tool set I'm using for the project needs. In my experience, the need for this level of proof is very rare, though, since most shift/reduce conflicts I have come across have been fairly trivial ones to show the correctness of (on the order of your example).

Resources