Related
I am trying to compute distance (in # of pixels) between two edges in an image. I have corrected for image perspective using cv2.warpPerspective method and have converted the resulting image into grayscale followed by filtering using gaussian blur. I have tried various thresholding methods and found out that cv2.ADAPTIVE_THRESH_GAUSSIAN works best. Other methods are too noisy or miss the second edge in the left side of the object as seen in result of adaptive gaussian thresholding.
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Load the image
imgRoadvR10 = cv2.imread('sampleimage.jpg') # image is already corrected for perspective warp using cv2.warpPerspective
# convert to grayscale
imgRoadvR10_GrayPersp = cv2.cvtColor(imgRoadvR10, cv2.COLOR_BGR2GRAY)
# gaussian blur
a10lvR10_gblur = cv2.GaussianBlur(imgRoadvR10_GrayPersp,(5,5),0)
# Try different thresholding methods
ret,a10lvR10_th1 = cv2.threshold(a10lvR10_gblur,127,255,cv2.THRESH_BINARY)
a10lvR10_th2 = cv2.adaptiveThreshold(a10lvR10_gblur,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2)
a10lvR10_th3 = cv2.adaptiveThreshold(a10lvR10_gblur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY_INV,11,2)
# Otsu's thresholding
ret2,a10lvR10_th4 = cv2.threshold(a10lvR10_gblur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print(ret2)
# Plot results
plt.figure()
titles = ['Original Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding','OTSU Thresholding']
images = [a10lvR10_gblur, a10lvR10_th1, a10lvR10_th2, a10lvR10_th3, a10lvR10_th4]
for i in range(5):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
Closer look at result of adaptive gaussian thresholding:
I want to find the width of this rectangular object. The width is measured from the second edge on the left side to the edge on the right side (see image below):
How can I measure the width? I have been reading upon morphological operations and edge detection, But not sure how to proceed next. Any suggestions will be appreciated
This is not the best idea and I think a more logical and simple solution can be obtained. However, this idea may help you.
import cv2
import numpy as np
#load image
im = cv2.imread("test3.jpg", 1)
#Convert to gray
mask = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
#convert to black and white
mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
#try to remove noise
#you can just use median blur or any other method
mask = cv2.erode(mask, np.ones((8, 0), "uint8"))
mask = cv2.dilate(mask, np.ones((32, 0), "uint8"))
mask = cv2.medianBlur(mask, 9)
#save cleaned image
cv2.imwrite("out1.jpg", mask)
A cleaner version of your output image:
out1:
Next we can get the coordinates of the lines. I got the coordinates of the first line from the left. I think you have to change the code a bit to get the coordinates of the sidebar.
h = len(mask) - 1
def count(row):
counter = 0
for i in range(0, len(row)):
if row[i] == 255:
break
counter += 1
return counter
def line(im, pt1, pt2, color, thickness):
im = cv2.line(
img=im,
pt1=pt1,
pt2=pt2,
color=color,
thickness=thickness,
lineType=cv2.LINE_AA,
)
return im
def center(x1, y1, x2, y2):
return (int((x1 + x2) / 2), int((y1 + y2) / 2))
topLeft = count(mask[0])
bottomLeft = count(mask[h])
# to shadow and hide the old left line
mask = line(mask, (topLeft, 0), (bottomLeft, h), (0, 0, 0), 80)
topRight = count(mask[0])
bottomRight = count(mask[h])
# to shadow and hide the old right line
mask = line(mask, (topRight, 0), (bottomRight, h), (0, 0, 0), 80)
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
# to draw new clean left line
mask = line(mask, (topLeft, 0), (bottomLeft, h), (128, 0, 255), 25)
# to draw new clean right line
mask = line(mask, (topRight, 0), (bottomRight, h), (128, 0, 255), 25)
a = center(topLeft, 0, bottomLeft, h)
b = center(topRight, 0, bottomRight, h)
mask = line(mask, a, b, (128, 0, 255), 25)
cv2.imwrite("out2.jpg", mask)
out2:
Now you can calculate the distance between "a" and "b".
I have some code, largely taken from various sources linked at the bottom of this post, written in Python, that takes an image of shape [height, width] and some bounding boxes in the [x_min, y_min, x_max, y_max] format, both numpy arrays, and rotates an image and its bounding boxes counterclockwise. Since after rotation the bounding box becomes more of a "diamond shape", i.e. not axis aligned, then I perform some calculations to make it axis aligned. The purpose of this code is to perform data augmentation in training an object detection neural network through the use of rotated data (where flipping horizontally or vertically is common). It seems flips of other angles are common for image classification, without bounding boxes, but when there is boxes, the resources for how to flip the boxes as well as the images is relatively sparse/niche.
It seems when I input an angle of 45 degrees, that I get some less than "tight" bounding boxes, as in the four corners are not a very good annotation, whereas the original one was close to perfect.
The image shown below is the first image in the MS COCO 2014 object detection dataset (training image), and its first bounding box annotation. My code is as follows:
import math
import cv2
import numpy as np
# angle assumed to be in degrees
# bbs a list of bounding boxes in x_min, y_min, x_max, y_max format
def rotateImageAndBoundingBoxes(im, bbs, angle):
h, w = im.shape[0], im.shape[1]
(cX, cY) = (w//2, h//2) # original image center
M = cv2.getRotationMatrix2D((cX, cY), angle, 1.0) # 2 by 3 rotation matrix
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# compute the dimensions of the rotated image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# adjust the rotation matrix to take into account translation of the new centre
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
rotated_im = cv2.warpAffine(im, M, (nW, nH))
rotated_bbs = []
for bb in bbs:
# get the four rotated corners of the bounding box
vec1 = np.matmul(M, np.array([bb[0], bb[1], 1], dtype=np.float64)) # top left corner transformed
vec2 = np.matmul(M, np.array([bb[2], bb[1], 1], dtype=np.float64)) # top right corner transformed
vec3 = np.matmul(M, np.array([bb[0], bb[3], 1], dtype=np.float64)) # bottom left corner transformed
vec4 = np.matmul(M, np.array([bb[2], bb[3], 1], dtype=np.float64)) # bottom right corner transformed
x_vals = [vec1[0], vec2[0], vec3[0], vec4[0]]
y_vals = [vec1[1], vec2[1], vec3[1], vec4[1]]
x_min = math.ceil(np.min(x_vals))
x_max = math.floor(np.max(x_vals))
y_min = math.ceil(np.min(y_vals))
y_max = math.floor(np.max(y_vals))
bb = [x_min, y_min, x_max, y_max]
rotated_bbs.append(bb)
// my function to resize image and bbs to the original image size
rotated_im, rotated_bbs = resizeImageAndBoxes(rotated_im, w, h, rotated_bbs)
return rotated_im, rotated_bbs
The good bounding box looks like:
The not-so-good bounding box looks like :
I am trying to determine if this is an error of my code, or this is expected behavior? It seems like this problem is less apparent at integer multiples of pi/2 radians (90 degrees), but I would like to achieve tight bounding boxes at any angle of rotation. Any insights at all appreciated.
Sources:
[Open CV2 documentation] https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#gafbbc470ce83812914a70abfb604f4326
[Data Augmentation Discussion]
https://blog.paperspace.com/data-augmentation-for-object-detection-rotation-and-shearing/
[Mathematics of rotation around an arbitrary point in 2 dimension]
https://math.stackexchange.com/questions/2093314/rotation-matrix-of-rotation-around-a-point-other-than-the-origin
It seems for the most part this is expected behavior as per the comments. I do have a kind of hacky solution to this problem, where you can write a function like
# assuming box coords = [x_min, y_min, x_max, y_max]
def cropBoxByPercentage(box_coords, image_width, image_height, x_percentage=0.05, y_percentage=0.05):
box_xmin = box_coords[0]
box_ymin = box_coords[1]
box_xmax = box_coords[2]
box_ymax = box_coords[3]
box_width = box_xmax-box_xmin+1
box_height = box_ymax-box_ymin+1
dx = int(x_percentage * box_width)
dy = int(y_percentage * box_height)
box_xmin = max(0, box_xmin-dx)
box_xmax = min(image_width-1, box_xmax+dx)
box_ymin = max(0, box_ymax - dy)
box_ymax = min(image_height - 1, box_ymax + dy)
return np.array([box_xmin, box_xmax, box_ymin, box_ymax])
Where computing the x_percentage and y_percentage can be computed using a fixed value, or could be computed using some heuristic.
I have a picture like this:
And then I transform it into binary image and use canny to detect edge of the picture:
gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
edge = Image.fromarray(edges)
And then I get the result as:
I want to get the area of 2 like this:
My solution is to use HoughLines to find lines in the picture and calculate the area of triangle formed by lines. However, this way is not precise because the closed area is not a standard triangle. How to get the area of region 2?
A simple approach using floodFill and countNonZero could be the following code snippet. My standard quote on contourArea from the help:
The function computes a contour area. Similarly to moments, the area is computed using the Green formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using drawContours or fillPoly, can be different. Also, the function will most certainly give a wrong results for contours with self-intersections.
Code:
import cv2
import numpy as np
# Input image
img = cv2.imread('images/YMMEE.jpg', cv2.IMREAD_GRAYSCALE)
# Needed due to JPG artifacts
_, temp = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
# Dilate to better detect contours
temp = cv2.dilate(temp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Find largest contour
cnts, _ = cv2.findContours(temp, cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)
largestCnt = []
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initiale mask for flood filling
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour, flood filled
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Count pixels in desired region
area = cv2.countNonZero(temp)
# Put result on original image
img = cv2.putText(img, str(area), (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, 255)
cv2.imshow('Input', img)
cv2.imshow('Temp image', temp)
cv2.waitKey(0)
Temporary image:
Result image:
Caveat: findContours has some problems one the right side, where the line is very close to the bottom image border, resulting in possibly omitting some pixels.
Disclaimer: I'm new to Python in general, and specially to the Python API of OpenCV (C++ for the win). Comments, improvements, highlighting Python no-gos are highly welcome!
There is a very simple way to find this area, if you take some assumptions that are met in the example image:
The area to be found is bounded on top by a line
Any additional lines in the image are above the line of interest
There are no discontinuities in the line
In this case, the area of the region of interest is given by the sum of the lengths from the bottom of the image to the first set pixel. We can compute this with:
import numpy as np
import matplotlib.pyplot as pp
img = pp.imread('/home/cris/tmp/YMMEE.jpg')
img = np.flip(img, axis=0)
pos = np.argmax(img, axis=0)
area = np.sum(pos)
print('Area = %d\n'%area)
This prints Area = 22040.
np.argmax finds the first set pixel on each column of the image, returning the index. By first using np.flip, we flip this axis so that the first pixel is actually the one on the bottom. The index corresponds to the number of pixels between the bottom of the image and the line (not including the set pixel).
Thus, we're computing the area under the line. If you need to include the line itself in the area, add pos.shape[0] to the area (i.e. the number of columns).
I'm a newbie to computer vision, and I'm trying to detect all the test strips in this image:
The result I'm trying to get:
I assume it should be very easy, because all the target objects are in rectangular shape and have a fixed aspect ratio. But I have no idea which algorithm or function should I use.
I've tried edge detection and the 2D feature detection example in OpenCV, but the result is not ideal. How should I detect these similar objects but with small differences?
Update:
The test strips can vary in colors, and of course, the shade of the result lines. But they all have the same references lines, as showing in the picture:
I don't know how should I describe these simple features for object detection, as most examples I found online are for complex objects like a building or a face.
The solution is not exact, but it provides a good starting point. You have to play with the parameters though. It would greatly help you if you partition the strips using some threshold method and then apply hough lines individually as #api55 mentioned.
Here are the results I got.
Code.
import cv2
import numpy as np
# read image
img = cv2.imread('KbxN6.jpg')
# filter it
img = cv2.GaussianBlur(img, (11, 11), 0)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# get edges using laplacian
laplacian_val = cv2.Laplacian(gray_img, cv2.CV_32F)
# lap_img = np.zeros_like(laplacian_val, dtype=np.float32)
# cv2.normalize(laplacian_val, lap_img, 1, 255, cv2.NORM_MINMAX)
# cv2.imwrite('laplacian_val.jpg', lap_img)
# apply threshold to edges
ret, laplacian_th = cv2.threshold(laplacian_val, thresh=2, maxval=255, type=cv2.THRESH_BINARY)
# filter out salt and pepper noise
laplacian_med = cv2.medianBlur(laplacian_th, 5)
# cv2.imwrite('laplacian_blur.jpg', laplacian_med)
laplacian_fin = np.array(laplacian_med, dtype=np.uint8)
# get lines in the filtered laplacian using Hough lines
lines = cv2.HoughLines(laplacian_fin,1,np.pi/180,480)
for rho,theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
# overlay line on original image
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
# cv2.imwrite('processed.jpg', img)
# cv2.imshow('Window', img)
# cv2.waitKey(0)
This is an alternative solution by using the function findCountours in combination with canny edge detection. The code is based very slightly on this tutorial
import cv2
import numpy as np
import imutils
image = cv2.imread('test.jpg')
resized = imutils.resize(image, width=300)
ratio = image.shape[0] / float(resized.shape[0])
# convert the resized image to grayscale, blur it slightly,
# and threshold it
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(resized,100,200)
cv2.imshow('dsd2', edges)
cv2.waitKey(0)
cnts = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
sd = ShapeDetector()
# loop over the contours
for c in cnts:
# compute the center of the contour, then detect the name of the
# shape using only the contour
M = cv2.moments(c)
cX = int((M["m10"] / M["m00"]) * ratio)
cY = int((M["m01"] / M["m00"]) * ratio)
# multiply the contour (x, y)-coordinates by the resize ratio,
# then draw the contours and the name of the shape on the image
c = c.astype("float")
c *= ratio
c = c.astype("int")
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
#show the output image
#cv2.imshow("Image", image)
#cv2.waitKey(0)
cv2.imwrite("erg.jpg",image)
Result:
I guess it can be improved by tuning following parameters:
image resizing width
CHAIN_APPROX_NONE (findContour Docs)
It is maybe also usefull to filter small contours or merge contours which are close to each other.
I´m trying to find the corners on a image, I don´t need the contours, only the 4 corners. I will change the perspective using 4 corners.
I´m using Opencv, but I need to know the steps to find the corners and what function I will use.
My images will be like this:(without red points, I will paint the points after)
EDITED:
After suggested steps, I writed the code: (Note: I´m not using pure OpenCv, I´m using javaCV, but the logic it´s the same).
// Load two images and allocate other structures (I´m using other image)
IplImage colored = cvLoadImage(
"res/scanteste.jpg",
CV_LOAD_IMAGE_UNCHANGED);
IplImage gray = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
IplImage smooth = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
//Step 1 - Convert from RGB to grayscale (cvCvtColor)
cvCvtColor(colored, gray, CV_RGB2GRAY);
//2 Smooth (cvSmooth)
cvSmooth( gray, smooth, CV_BLUR, 9, 9, 2, 2);
//3 - cvThreshold - What values?
cvThreshold(gray,gray, 155, 255, CV_THRESH_BINARY);
//4 - Detect edges (cvCanny) -What values?
int N = 7;
int aperature_size = N;
double lowThresh = 20;
double highThresh = 40;
cvCanny( gray, gray, lowThresh*N*N, highThresh*N*N, aperature_size );
//5 - Find contours (cvFindContours)
int total = 0;
CvSeq contour2 = new CvSeq(null);
CvMemStorage storage2 = cvCreateMemStorage(0);
CvMemStorage storageHull = cvCreateMemStorage(0);
total = cvFindContours(gray, storage2, contour2, Loader.sizeof(CvContour.class), CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
if(total > 1){
while (contour2 != null && !contour2.isNull()) {
if (contour2.elem_size() > 0) {
//6 - Approximate contours with linear features (cvApproxPoly)
CvSeq points = cvApproxPoly(contour2,Loader.sizeof(CvContour.class), storage2, CV_POLY_APPROX_DP,cvContourPerimeter(contour2)*0.005, 0);
cvDrawContours(gray, points,CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA);
}
contour2 = contour2.h_next();
}
}
So, I want to find the cornes, but I don´t know how to use corners function like cvCornerHarris and others.
First, check out /samples/c/squares.c in your OpenCV distribution. This example provides a square detector, and it should be a pretty good start on how to detect corner-like features. Then, take a look at OpenCV's feature-oriented functions like cvCornerHarris() and cvGoodFeaturesToTrack().
The above methods can return many corner-like features - most will not be the "true corners" you are looking for. In my application, I had to detect squares that had been rotated or skewed (due to perspective). My detection pipeline consisted of:
Convert from RGB to grayscale (cvCvtColor)
Smooth (cvSmooth)
Threshold (cvThreshold)
Detect edges (cvCanny)
Find contours (cvFindContours)
Approximate contours with linear features (cvApproxPoly)
Find "rectangles" which were structures that: had polygonalized contours possessing 4 points, were of sufficient area, had adjacent edges were ~90 degrees, had distance between "opposite" vertices was of sufficient size, etc.
Step 7 was necessary because a slightly noisy image can yield many structures that appear rectangular after polygonalization. In my application, I also had to deal with square-like structures that appeared within, or overlapped the desired square. I found the contour's area property and center of gravity to be helpful in discerning the proper rectangle.
At a first glance, for a human eye there are 4 corners. But in computer vision, a corner is considered to be a point that has large gradient change in intensity across its neighborhood. The neighborhood can be a 4 pixel neighborhood or an 8 pixel neighborhood.
In the equation provided to find the gradient of intensity, it has been considered for 4-pixel neighborhood SEE DOCUMENTATION.
Here is my approach for the image in question. I have the code in python as well:
path = r'C:\Users\selwyn77\Desktop\Stack\corner'
filename = 'env.jpg'
img = cv2.imread(os.path.join(path, filename))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #--- convert to grayscale
It is a good choice to always blur the image to remove less possible gradient changes and preserve the more intense ones. I opted to choose the bilateral filter which unlike the Gaussian filter doesn't blur all the pixels in the neighborhood. It rather blurs pixels which has similar pixel intensity to that of the central pixel. In short it preserves edges/corners of high gradient change but blurs regions that have minimal gradient changes.
bi = cv2.bilateralFilter(gray, 5, 75, 75)
cv2.imshow('bi',bi)
To a human it is not so much of a difference compared to the original image. But it does matter. Now finding possible corners:
dst = cv2.cornerHarris(bi, 2, 3, 0.04)
dst returns an array (the same 2D shape of the image) with eigen values obtained from the final equation mentioned HERE.
Now a threshold has to be applied to select those corners beyond a certain value. I will use the one in the documentation:
#--- create a black image to see where those corners occur ---
mask = np.zeros_like(gray)
#--- applying a threshold and turning those pixels above the threshold to white ---
mask[dst>0.01*dst.max()] = 255
cv2.imshow('mask', mask)
The white pixels are regions of possible corners. You can find many corners neighboring each other.
To draw the selected corners on the image:
img[dst > 0.01 * dst.max()] = [0, 0, 255] #--- [0, 0, 255] --> Red ---
cv2.imshow('dst', img)
(Red colored pixels are the corners, not so visible)
In order to get an array of all pixels with corners:
coordinates = np.argwhere(mask)
UPDATE
Variable coor is an array of arrays. Converting it to list of lists
coor_list = [l.tolist() for l in list(coor)]
Converting the above to list of tuples
coor_tuples = [tuple(l) for l in coor_list]
I have an easy and rather naive way to find the 4 corners. I simply calculated the distance of each corner to every other corner. I preserved those corners whose distance exceeded a certain threshold.
Here is the code:
thresh = 50
def distance(pt1, pt2):
(x1, y1), (x2, y2) = pt1, pt2
dist = math.sqrt( (x2 - x1)**2 + (y2 - y1)**2 )
return dist
coor_tuples_copy = coor_tuples
i = 1
for pt1 in coor_tuples:
print(' I :', i)
for pt2 in coor_tuples[i::1]:
print(pt1, pt2)
print('Distance :', distance(pt1, pt2))
if(distance(pt1, pt2) < thresh):
coor_tuples_copy.remove(pt2)
i+=1
Prior to running the snippet above coor_tuples had all corner points:
[(4, 42),
(4, 43),
(5, 43),
(5, 44),
(6, 44),
(7, 219),
(133, 36),
(133, 37),
(133, 38),
(134, 37),
(135, 224),
(135, 225),
(136, 225),
(136, 226),
(137, 225),
(137, 226),
(137, 227),
(138, 226)]
After running the snippet I was left with 4 corners:
[(4, 42), (7, 219), (133, 36), (135, 224)]
UPDATE 2
Now all you have to do is just mark these 4 points on a copy of the original image.
img2 = img.copy()
for pt in coor_tuples:
cv2.circle(img2, tuple(reversed(pt)), 3, (0, 0, 255), -1)
cv2.imshow('Image with 4 corners', img2)
Here's an implementation using cv2.goodFeaturesToTrack() to detect corners. The approach is
Convert image to grayscale
Perform canny edge detection
Detect corners
Optionally perform 4-point perspective transform to get top-down view of image
Using this starting image,
After converting to grayscale, we perform canny edge detection
Now that we have a decent binary image, we can use cv2.goodFeaturesToTrack()
corners = cv2.goodFeaturesToTrack(canny, 4, 0.5, 50)
For the parameters, we give it the canny image, set the maximum number of corners to 4 (maxCorners), use a minimum accepted quality of 0.5 (qualityLevel), and set the minimum possible Euclidean distance between the returned corners to 50 (minDistance). Here's the result
Now that we have identified the corners, we can perform a 4-point perspective transform to obtain a top-down view of the object. We first order the points clockwise then draw the result onto a mask.
Note: We could have just found contours on the Canny image instead of doing this step to create the mask, but pretend we only had the 4 corner points to work with
Next we find contours on this mask and filter using cv2.arcLength() and cv2.approxPolyDP(). The idea is that if the contour has 4 points, then it must be our object. Once we have this contour, we perform a perspective transform
Finally we rotate the image depending on the desired orientation. Here's the result
Code for only detecting corners
import cv2
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
for corner in corners:
x,y = corner.ravel()
cv2.circle(image,(x,y),5,(36,255,12),-1)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.waitKey()
Code for detecting corners and performing perspective transform
import cv2
import numpy as np
def rotate_image(image, angle):
# Grab the dimensions of the image and then determine the center
(h, w) = image.shape[:2]
(cX, cY) = (w / 2, h / 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# Compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# Adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# Perform the actual rotation and return the image
return cv2.warpAffine(image, M, (nW, nH))
def order_points_clockwise(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now, sort the right-most coordinates according to their
# y-coordinates so we can grab the top-right and bottom-right
# points, respectively
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="int32")
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
c_list = []
for corner in corners:
x,y = corner.ravel()
c_list.append([int(x), int(y)])
cv2.circle(image,(x,y),5,(36,255,12),-1)
corner_points = np.array([c_list[0], c_list[1], c_list[2], c_list[3]])
ordered_corner_points = order_points_clockwise(corner_points)
mask = np.zeros(image.shape, dtype=np.uint8)
cv2.fillPoly(mask, [ordered_corner_points], (255,255,255))
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if len(approx) == 4:
transformed = perspective_transform(original, approx)
result = rotate_image(transformed, -90)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.imshow('transformed', transformed)
cv2.imshow('result', result)
cv2.waitKey()
find contours with RETR_EXTERNAL option.(gray -> gaussian filter -> canny edge -> find contour)
find the largest size contour -> this will be the edge of the rectangle
find corners with little calculation
Mat m;//image file
findContours(m, contours_, hierachy_, RETR_EXTERNAL);
auto it = max_element(contours_.begin(), contours_.end(),
[](const vector<Point> &a, const vector<Point> &b) {
return a.size() < b.size(); });
Point2f xy[4] = {{9000,9000}, {0, 1000}, {1000, 0}, {0,0}};
for(auto &[x, y] : *it) {
if(x + y < xy[0].x + xy[0].y) xy[0] = {x, y};
if(x - y > xy[1].x - xy[1].y) xy[1] = {x, y};
if(y - x > xy[2].y - xy[2].x) xy[2] = {x, y};
if(x + y > xy[3].x + xy[3].y) xy[3] = {x, y};
}
xy[4] will be the four corners.
I was able to extract four corners this way.
Apply houghlines to the canny image - you will get a list of points
apply convex hull to this set of points