For a binary prediction problem, if the true label is 0, the gain for right predict is T_0, the loss for wrong pre is F_0. The same for 1, T_1, F_1.
Every sample has its unique T_0, T_1, F_0, F_1. I think I need to change eval metric, but I do not know how to do it. Because most of customized eval metric only input (pred, true label), do you know how can I solve the problem?
I think one work around would be to simply append the four values T_0,T_1,F_0,F_1 to the ground truth itself. Since the evaluation metric would only be used once, i.e. while training the classifier, your goal can be accompalished.
Suppose you somehow change your true labels from
[1, 0, 1, 1, 0, 0]
to this:
[ [1,[T_0, F_0, T_1, F_1]],
[0,[T_0, F_0, T_1, F_1]],
[1,[T_0, F_0, T_1, F_1]],
[1,[T_0, F_0, T_1, F_1]],
[0,[T_0, F_0, T_1, F_1]],
[0,[T_0, F_0, T_1, F_1]] ]
i.e. each ground truth value is accompanied by an array consisting of T_0,T_1,F_0,F_1 for that corresponding sample.
Now you can define your metric like this:
def my_metric(y_pred,y_true):
tot_sum = 0.0
for idx in range(0,len(y_pred):
if y_true[idx][0]==0:
if y_pred[idx]==0:
total_sum+=y_pred[idx][1][0] #Add gain for T_0
else:
total_sum-=y_pred[idx][1][1] #Subtract loss for F_0
else:
if y_pred[idx]==1:
total_sum+=y_pred[idx][1][2] #Add gain for T_1
else:
total_sum-=y_pred[idx][1][3] #Subtract loss for F_1
return total_sum
I think there might be an efficient way to do this using numpy as well, I will update the answer if I find something. However, this should work fine as long as to append the values to the ground truth correctly.
Related
For multi-class classification, we use softmax function to calculate the probability.
In the case of case = 2, we have softmax(a)_0 = e^a_0/(e^a_0 + e^a_1) = 1/(1+e^(a_1 - a_0) = sigmoid(a_0 - a_1), which we reduce softmax to logistic, and we only use 1 logit.
I'm wondering if it's possible to only use K-1 logits to model the multi-class classification problem, when we have K class?
The question is essentially equiavalent to asking "is there a surjective (preferably bijective) function from R^{n-1} to n-simplex" and the answer is of course positive. Some examples:
1. f([x1, ..., xn-1]) = softmax([x1, ..., xn-1, 0])
2. f([x1, ..., xn-1]) = [sigmoid(x1), (1-sigmoid(x1)) * softmax([x2, ..., xn-1])]
In general these will often introduce some arbitrary assymetry to your formulation which due to Okham's razor is something we usually avoid.
Note, that
softmax([-x, 0]) = [e^{-x}/(e^{-x} + e^0), 1/(e^{-x} + 1)]
= [1-sigmoid(x), sigmoid(x)]
So in a sense solution (1) is a generalisation of what you do with sigmoid in K=2 case to the K>2 case. Unfortunately you have to arbitrary pick which of the dimensions you wil substitute with 0.
It seems that the sum of corresponding leaf values of each tree doesn't equal to the prediction. Here is a sample code:
X = pd.DataFrame({'x': np.linspace(-10, 10, 10)})
y = X['x'] * 2
model = xgb.XGBRegressor(booster='gbtree', tree_method='exact', n_estimators=100, max_depth=1).fit(X, y)
Xtest = pd.DataFrame({'x': np.linspace(-20, 20, 101)})
Ytest = model.predict(Xtest)
plt.plot(X['x'], y, 'b.-')
plt.plot(Xtest['x'], Ytest, 'r.')
The tree dumps reads:
model.get_booster().get_dump()[:2]
['0:[x<0] yes=1,no=2,missing=1\n\t1:leaf=-2.90277791\n\t2:leaf=2.65277767\n',
'0:[x<2.22222233] yes=1,no=2,missing=1\n\t1:leaf=-1.90595233\n\t2:leaf=2.44333339\n']
If I only use one tree to do prediction:
Ytest2 = model.predict(Xtest, ntree_limit=1)
plt.plot(XX1['x'], Ytest2, '.')
np.unique(Ytest2) # array([-2.4028, 3.1528], dtype=float32)
Clearly, Ytest2's unique values does not corresponds to the leaf value of the first tree, which is -2.90277791 and 2.65277767, although the observed split point is right at 0.
How are the leaf values related to the predictions?
Why are the leaf values in the first tree not symmetric, provided that the input is symmetric?
Before fitting the first tree, xgboost makes an initial prediction. This is controlled by the parameter base_score, which defaults to 0.5. And indeed, -2.902777 + 0.5 ~=-2.4028 and 2.652777 + 0.5 ~= 3.1528.
That also explains your second question: the differences from that initial prediction are not symmetric. If you set learning_rate=1 you probably could get the predictions to be symmetric after one round, or you could just set base_score=0.
I wrote a vanilla autoencoder using only Dense layer.
Below is my code:
iLayer = Input ((784,))
layer1 = Dense(128, activation='relu' ) (iLayer)
layer2 = Dense(64, activation='relu') (layer1)
layer3 = Dense(28, activation ='relu') (layer2)
layer4 = Dense(64, activation='relu') (layer3)
layer5 = Dense(128, activation='relu' ) (layer4)
layer6 = Dense(784, activation='softmax' ) (layer5)
model = Model (iLayer, layer6)
model.compile(loss='binary_crossentropy', optimizer='adam')
(trainX, trainY), (testX, testY) = mnist.load_data()
print ("shape of the trainX", trainX.shape)
trainX = trainX.reshape(trainX.shape[0], trainX.shape[1]* trainX.shape[2])
print ("shape of the trainX", trainX.shape)
model.fit (trainX, trainX, epochs=5, batch_size=100)
Questions:
1) softmax provides probability distribution. Understood. This means, I would have a vector of 784 values with probability between 0 and 1. For example [ 0.02, 0.03..... upto 784 items], summing all 784 elements provides 1.
2) I don't understand how the binary crossentropy works with these values. Binary cross entropy is for two values of output, right?
In the context of autoencoders the input and output of the model is the same. So, if the input values are in the range [0,1] then it is acceptable to use sigmoid as the activation function of last layer. Otherwise, you need to use an appropriate activation function for the last layer (e.g. linear which is the default one).
As for the loss function, it comes back to the values of input data again. If the input data are only between zeros and ones (and not the values between them), then binary_crossentropy is acceptable as the loss function. Otherwise, you need to use other loss functions such as 'mse' (i.e. mean squared error) or 'mae' (i.e. mean absolute error). Note that in the case of input values in range [0,1] you can use binary_crossentropy, as it is usually used (e.g. Keras autoencoder tutorial and this paper). However, don't expect that the loss value becomes zero since binary_crossentropy does not return zero when both prediction and label are not either zero or one (no matter they are equal or not). Here is a video from Hugo Larochelle where he explains the loss functions used in autoencoders (the part about using binary_crossentropy with inputs in range [0,1] starts at 5:30)
Concretely, in your example, you are using the MNIST dataset. So by default the values of MNIST are integers in the range [0, 255]. Usually you need to normalize them first:
trainX = trainX.astype('float32')
trainX /= 255.
Now the values would be in range [0,1]. So sigmoid can be used as the activation function and either of binary_crossentropy or mse as the loss function.
Why binary_crossentropy can be used even when the true label values (i.e. ground-truth) are in the range [0,1]?
Note that we are trying to minimize the loss function in training. So if the loss function we have used reaches its minimum value (which may not be necessarily equal to zero) when prediction is equal to true label, then it is an acceptable choice. Let's verify this is the case for binray cross-entropy which is defined as follows:
bce_loss = -y*log(p) - (1-y)*log(1-p)
where y is the true label and p is the predicted value. Let's consider y as fixed and see what value of p minimizes this function: we need to take the derivative with respect to p (I have assumed the log is the natural logarithm function for simplicity of calculations):
bce_loss_derivative = -y*(1/p) - (1-y)*(-1/(1-p)) = 0 =>
-y/p + (1-y)/(1-p) = 0 =>
-y*(1-p) + (1-y)*p = 0 =>
-y + y*p + p - y*p = 0 =>
p - y = 0 => y = p
As you can see binary cross-entropy have the minimum value when y=p, i.e. when the true label is equal to predicted label and this is exactly what we are looking for.
I have two questions on deeplearning4j that are somewhat related.
When I execute “INDArray predicted = model.output(features,false);” to generate a prediction, I get the label predicted by the model; it is either 0 or 1. I tried to search for a way to have a probability (value between 0 and 1) instead of strictly 0 or 1. This is useful when you need to set a threshold for what your model should consider as a 0 and what it should consider as a 1. For example, you may want your model to output '1' for any prediction that is higher than or equal to 0.9 and output '0' otherwise.
My second question is that I am not sure why the output is represented as a two-dimensional array (shown after the code below) even though there are only two possibilities, so it would be better to represent it with one value - especially if we want it as a probability (question #1) which is one value.
PS: in case relevant to the question, in the Schema the output column is defined using ".addColumnInteger". Below are snippets of the code used.
Part of the code:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(learningRate)
.updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new DenseLayer.Builder()
.nIn(numInputs)
.nOut(numHiddenNodes)
.weightInit(WeightInit.XAVIER)
.activation("relu")
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.weightInit(WeightInit.XAVIER)
.activation("softmax")
.weightInit(WeightInit.XAVIER)
.nIn(numHiddenNodes)
.nOut(numOutputs)
.build()
)
.pretrain(false).backprop(true).build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(10));
for (int n=0; n<nEpochs; n++) {
model.fit(trainIter);
}
Evaluation eval = new Evaluation(numOutputs);
while (testIter.hasNext()){
DataSet t = testIter.next();
INDArray features = t.getFeatureMatrix();
System.out.println("Input features: " + features);
INDArray labels = t.getLabels();
INDArray predicted = model.output(features,false);
System.out.println("Predicted output: "+ predicted);
System.out.println("Desired output: "+ labels);
eval.eval(labels, predicted);
System.out.println();
}
System.out.println(eval.stats());
Output from running the code above:
Input features: [0.10, 0.34, 1.00, 0.00, 1.00]
Predicted output: [1.00, 0.00]
Desired output: [1.00, 0.00]
*What I want the output to look like (i.e. a one-value probability):**
Input features: [0.10, 0.34, 1.00, 0.00, 1.00]
Predicted output: 0.14
Desired output: 0.0
I will answer your questions inline but I just want to note:
I would suggest taking a look at our docs and examples:
https://github.com/deeplearning4j/dl4j-examples
http://deeplearning4j.org/quickstart
A 100% 0 or 1 is just a badly tuned neural net. That's not at all how things work. A softmax by default returns probabilities. Your neural net is just badly tuned. Look at updating dl4j too. I'm not sure what version you're on but we haven't used strings in activations for at least a year now? You seem to have skipped a lot of steps when starting with us. I'll reiterate again, at least take a look above for a starting point rather than using year old code.
What you're seeing there is just standard deep learning 101. So the advice I'm about to give you can be found on the internet and is applicable for any deep learning software. A two label softmax sums each row to 1. If you want 1 label, use sigmoid with 1 output and a different loss function. We use softmax because it can work for any number of ouputs and all you have to do is change the number of outputs rather than having to change the loss function and activation function on top of that.
I am trying to create a list based on my neural network outputs and use it in Tensorflow as a loss function.
Assume that results is list of size [1, batch_size] that is output by a neural network. I check to see whether the first value of this list is in a specific range passed in as a placeholder called valid_range, and if it is add 1 to a list. If it is not, add -1. The goal is to make all predictions of the network in the range, so the correct predictions is a tensor of all 1, which I call correct_predictions.
values_list = []
for j in range(batch_size):
a = results[0, j] >= valid_range[0]
b = result[0, j] <= valid_range[1]
c = tf.logical_and(a, b)
if (c == 1):
values_list.append(1)
else:
values_list.append(-1.)
values_list_tensor = tf.convert_to_tensor(values_list)
correct_predictions = tf.ones([batch_size, ], tf.float32)
Now, I want to use this as a loss function in my network, so that I can force all the predictions to be in the specified range. I try to train like this:
loss = tf.reduce_mean(tf.squared_difference(values_list_tensor, correct_predictions))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
gradients, variables = zip(*optimizer.compute_gradients(loss))
gradients, _ = tf.clip_by_global_norm(gradients, gradient_clip_threshold)
optimize = optimizer.apply_gradients(zip(gradients, variables))
This, however, has a problem and throws an error on the last optimize line, saying:
ValueError: No gradients provided for any variable: ['<tensorflow.python.training.optimizer._RefVariableProcessor object at 0x7f0245d4afd0>',
'<tensorflow.python.training.optimizer._RefVariableProcessor object at 0x7f0245d66050>'
...
I tried to debug this in Tensorboard, and I notice that the list I am creating does not appear in the graph, so basically the x part of the loss function is not part of the network itself. Is there some way to accurately create a list based on the predictions of a neural network and use it in the loss function in Tensorflow to train the network?
Please help, I have been stuck on this for a few days now.
Edit:
Following what was suggested in the comments, I decided to use a l2 loss function, multiplying it by the binary vector I had from before values_list_tensor. The binary vector now has values 1 and 0 instead of 1 and -1. This way when the prediction is in the range the loss is 0, else it is the normal l2 loss. As I am unable to see the values of the tensors, I am not sure if this is correct. However, I can view the final loss and it is always 0, so something is wrong here. I am unsure if the multiplication is being done correctly and if values_list_tensor is calculated accurately? Can someone help and tell me what could be wrong?
loss = tf.reduce_mean(tf.nn.l2_loss(tf.matmul(tf.transpose(tf.expand_dims(values_list_tensor, 1)), tf.expand_dims(result[0, :], 1))))
Thanks
To answer the question in the comment. One way to write a piece-wise function is using tf.cond. For example, here is a function that returns 0 in [-1, 1] and x everywhere else:
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32)
y = tf.cond(tf.logical_or(tf.greater(x, 1.0), tf.less(x, -1.0)), lambda : x, lambda : 0.0)
y.eval({x: 1.5}) # prints 1.5
y.eval({x: 0.5}) # prints 0.0