how to calculate the area between two cars - opencv

I would like to know if from an image like the example it is possible to calculate the area between two consecutive cars:
Detect the two objects, calculate the distances between my camera and the two objects so deduce the area between the two objects
Any advice or references would be welcome thanks
https://i.stack.imgur.com/4IM6y.jpg

This is not a super scalable solution as it would vary by country. But license plates (at least in the US) are always of a similar dimension. This could be used to give you almost perfect distance reference and they are easy to detect. The difficulty remaining would be in estimating the space taken up by the partial view of the near car... but this would significantly reduce the complexity of the problem. To get that remaining bit, I would likely try to identify a tire/ hubcap and apply an offset to that... as I imagine that will get you pretty close (within 1-2 feet)

Related

How to count tablets successfully?

My last question on image recognition seemed to be too broad, so I would like to ask a more concrete question.
First the background. I have already developed a (round) pill counter. It uses something similar to this tutorial. After I made it I also found something similar with this other tutorial.
However my method fails for something like this image
Although the segmentation process is a bit complicated (because of the semi-transparency of the tablets) I have managed to get it
My problem is here. How can I count the elongated tablets, separating each one from the image, similar to the final results in the linked tutorials?
So far I have applied distance transform and then my own version of watershed and I got
As you can see it fails in the adjacent tablets (distance transform usually does).
Take into account that the solution does have to work for this image and also for other arrangements of the tablets, the most difficult being for example
I am open to use OpenCV or if necessary implement on my own algorithms. So far I have tried both (used OpenCV functions and also programmed my own libraries) I am also open to use C++, or python or other. (I programmed them in C++ and I have done it on C# too).
I am also working on this pill counting problem (I'm much earlier in this process than you are), and to solve the piece you are working on - of touching pills, my general idea how to solve this is to capture contours of the pills once you have a good mask of the pills, and then calculate the area of a single pill.
For this approach I'm assuming that I have enough pills in the image such that the amount of them that are untouching is greater than those which are touching, and no pills overlap one another. For my application, placing this restriction I think is reasonable (humans can do a quick look at the pills they've dumped out, and at least roughly make them not touching without too much work. It's also possible that I could design a tray with some sort of dimples in it such that it would coerce the pills to not be touching)
I do this by sorting the contour areas (which, with the right thresholding should lead to only pills and pill-groups being in the identified contours), and taking the median value.
Then, with a good value for the area of a pill, you can look for contours with areas that are a multiple of that median area (+/- some % error value).
I also use that median value to filter out contours that are clearly not big enough to be pills, and ones that are far too large to be a pill (the latter though could be more troublesome, since it could still be a grouping of touching pills).
Given that the pills are all identical and don’t overlap, simply divide the total pill area by the area of a single pill.
The area is estimated simply counting the number of “pill” pixels.
You do need to calibrate the method by giving it the area of a single pill. This can be trivially obtained by giving the correct solution to one of the images (manual counting), then all the other images can be counted automatically.

finding better neighbour in Simulated annealing

I am solving TSP using simulated annealing.I have a question that :
In https://en.wikipedia.org/wiki/Simulated_annealing in Efficient candidate generation block it said:
the travelling salesman problem above, for example, swapping two consecutive cities in a low-energy tour is expected to have a modest effect on its energy (length); whereas swapping two arbitrary cities is far more likely to increase its length than to decrease it. Thus, the consecutive-swap neighbour generator is expected to perform better than the arbitrary-swap one.
So I generated first city randomly and second consecutive to the first.but solution got worsen .
am i doing wrong?
Initially you need to explore all the solution surface. Which you can do in two ways, either by generating effectively random candidates, or by having a high temperature. If you don't use method one, you must use method two. Which means ramping up temperature until essentially all moves are accepted. Then you reduce it as slowly as you are able. A "swap adjacent cities" move will then produce a reasonable result.

Evaluating the confidence of an image registration process

Background:
Assuming there are two shots for the same scene from two different perspective. Applying a registration algorithm on them will result in Homography Matrix that represents the relation between them. By warping one of them using this Homography Matrix will (theoretically) result in two identical images (if the non-shared area is ignored).
Since no perfection is exist, the two images may not be absolutely identical, we may find some differences between them and this differences can be shown obviously while subtracting them.
Example:
Furthermore, the lighting condition may results in huge difference while subtracting.
Problem:
I am looking for a metric that I can evaluate the accuracy of the registration process. This metric should be:
Normalized: 0->1 measurement which does not relate to the image type (natural scene, text, human...). For example, if two totally different registration process on totally different pair of photos have the same confidence, let us say 0.5, this means that the same good (or bad) registeration happened. This should applied even one of the pair is for very details-reach photos and the other of white background with "Hello" in black written.
Distinguishing between miss-registration accuracy and different lighting conditions: Although there is many way to eliminate this difference and make the two images look approximately the same, I am looking of measurement that does not count them rather than fixing them (performance issue).
One of the first thing that came in mind is to sum the absolute differences of the two images. However, this will result in a number that represent the error. This number has no meaning when you want to compare it to another registration process because another images with better registration but more details may give a bigger error rather than a smaller one.
Sorry for the long post. I am glad to provide any further information and collaborating in finding the solution.
P.S. Using OpenCV is acceptable and preferable.
You can always use invariant (lighting/scale/rotation) features in both images. For example SIFT features.
When you match these using typical ratio (between nearest and next nearest), you'll have a large set of matches. You can calculate the homography using your method, or using RANSAC on these matches.
In any case, for any homography candidate, you can calculate the number of feature matches (out of all), which agree with the model.
The number divided by the total matches number gives you a metric of 0-1 as to the quality of the model.
If you use RANSAC using the matches to calculate the homography, the quality metric is already built in.
This problem is given two images decide how misaligned they are.
Thats why we did the registration. The registration approach cannot answer itself how bad a job it did becasue if it knew it it would have done it.
Only in the absolute correct case do we know the result: 0
You want a deterministic answer? you add deterministic input.
a red square in a given fixed position which can be measured how rotated - translated-scaled it is. In the conditions of lab this can be achieved.

How to find brightest rectangle of certain size in integral image?

Is there anything faster than sliding window? I tried sort of binary search with overlapping rectangles - it kinda works but sometimes cuts off part of the blob (expected, right) - see the video in http://juick.com/lurker/2142051
Binary search makes no sense, because it is an algorithm for searching for specific values in a sorted structure.
Unless you have some apriori knowledge about the image, you need to check all possible locations, which is the sliding window method you suggested.
Chris is correct, unless you can say something about the statistics of the surrounding regions, e.g., "certain arrangements of pixels around the spot I'm looking for are unlikely". Note, this is different from saying "will never happen", and any algorithm based on statistical approaches will have an associated probability of (wrong box found).
If you think the statistics of the larger regions around your desired location might be informative, you might be able to do some block-processing on larger blocks before doing the fine-level sliding window. For example, if you can say with high probability that a certain 64 x 64 region doesn't contain the max, then, you can throw out a lot of [64 x 64] pixel regions, with 32 pixel overlap using (maybe) only a few features.
You can train something like AdaBoost to do this. See the classic Viola-Jones work which does this for face-detection http://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
If you absolutely need the maxima location, then like Chris said, you need to search everywhere.

How to use the A* path finding algorithm on a grid less 2D plane?

How can I implement the A* algorithm on a gridless 2D plane with no nodes or cells? I need the object to maneuver around a relatively high number of static and moving obstacles in the way of the goal.
My current implementation is to create eight points around the object and treat them as the centers of imaginary adjacent squares that might be a potential position for the object. Then I calculate the heuristic function for each and select the best. The distances between the starting point and the movement point, and between the movement point and the goal I calculate the normal way with the Pythagorean theorem. The problem is that this way the object often ignores all obstacle and even more often gets stuck moving back and forth between two positions.
I realize how silly mu question might seem, but any help is appreciated.
Create an imaginary grid at whatever resolution is suitable for your problem: As coarse grained as possible for good performance but fine-grained enough to find (desirable) gaps between obstacles. Your grid might relate to a quadtree with your obstacle objects as well.
Execute A* over the grid. The grid may even be pre-populated with useful information like proximity to static obstacles. Once you have a path along the grid squares, post-process that path into a sequence of waypoints wherever there's an inflection in the path. Then travel along the lines between the waypoints.
By the way, you do not need the actual distance (c.f. your mention of Pythagorean theorem): A* works fine with an estimate of the distance. Manhattan distance is a popular choice: |dx| + |dy|. If your grid game allows diagonal movement (or the grid is "fake"), simply max(|dx|, |dy|) is probably sufficient.
Uh. The first thing that come to my mind is, that at each point you need to calculate the gradient or vector to find out the direction to go in the next step. Then you move by a small epsilon and redo.
This basically creates a grid for you, you could vary the cell size by choosing a small epsilon. By doing this instead of using a fixed grid you should be able to calculate even with small degrees in each step -- smaller then 45° from your 8-point example.
Theoretically you might be able to solve the formulas symbolically (eps against 0), which could lead to on optimal solution... just a thought.
How are the obstacles represented? Are they polygons? You can then use the polygon vertices as nodes. If the obstacles are not represented as polygons, you could generate some sort of convex hull around them, and use its vertices for navigation. EDIT: I just realized, you mentioned that you have to navigate around a relatively high number of obstacles. Using the obstacle vertices might be infeasible with to many obstacles.
I do not know about moving obstacles, I believe A* doesn't find an optimal path with moving obstacles.
You mention that your object moves back and fourth - A* should not do this. A* visits each movement point only once. This could be an artifact of generating movement points on the fly, or from the moving obstacles.
I remember encountering this problem in college, but we didn't use an A* search. I can't remember the exact details of the math but I can give you the basic idea. Maybe someone else can be more detailed.
We're going to create a potential field out of your playing area that an object can follow.
Take your playing field and tilt or warp it so that the start point is at the highest point, and the goal is at the lowest point.
Poke a potential well down into the goal, to reinforce that it's a destination.
For every obstacle, create a potential hill. For non-point obstacles, which yours are, the potential field can increase asymptotically at the edges of the obstacle.
Now imagine your object as a marble. If you placed it at the starting point, it should roll down the playing field, around obstacles, and fall into the goal.
The hard part, the math I don't remember, is the equations that represent each of these bumps and wells. If you figure that out, add them together to get your final field, then do some vector calculus to find the gradient (just like towi said) and that's the direction you want to go at any step. Hopefully this method is fast enough that you can recalculate it at every step, since your obstacles move.
Sounds like you're implementing The Wumpus game based on Norvig and Russel's discussion of A* in Artifical Intelligence: A Modern Approach, or something very similar.
If so, you'll probably need to incorporate obstacle detection as part of your heuristic function (hence you'll need to have sensors that alert your agent to the signs of obstacles, as seen here).
To solve the back and forth issue, you may need to store the traveled path so you can tell if you've already been to a location and have the heurisitic function examine the past N number of moves (say 4) and use that as a tie-breaker (i.e. if I can go north and east from here, and my last 4 moves have been east, west, east, west, go north this time)

Resources