error Evaluating classifier Train and test dataset are not compatible - machine-learning

I am getting error while running SMO model on test dataset in weka
Problem Evaluating classifier Train and test dataset are not
compatible. Class index differ: 3 != 0
Training dataset format
mean,variance,label
54.3333333333,1205.55555556,five
3.0,0.0,five
31739.0,0.0,five
3205.5,4475340.25,one
Test dataset format
mean,variance
3.0,0.0
257.0,0.0
216.0,14884.0
736.0,0.0
I trained the training dataset and want to get labels for the test dataset. Why I am getting these errors.

The test dataset should have identical structure to the training data. In your case you should add a column to the end called "label". Then, you need to assign some value to the label. This could be simply a question mark "?" to indicate the true label is unknown.

Related

Calculating Probability of a Classification Model Prediction

I have a classification task. The training data has 50 different labels. The customer wants to differentiate the low probability predictions, meaning that, I have to classify some test data as Unclassified / Other depending on the probability (certainty?) of the model.
When I test my code, the prediction result is a numpy array (I'm using different models, this is one is pre-trained BertTransformer). The prediction array doesn't contain probabilities such as in Keras predict_proba() method. These are numbers generated by prediction method of pretrained BertTransformer model.
[[-1.7862008 -0.7037363 0.09885322 1.5318055 2.1137428 -0.2216074
0.18905772 -0.32575375 1.0748093 -0.06001111 0.01083148 0.47495762
0.27160102 0.13852511 -0.68440574 0.6773654 -2.2712054 -0.2864312
-0.8428862 -2.1132915 -1.0157436 -1.0340284 -0.35126117 -1.0333195
9.149789 -0.21288703 0.11455813 -0.32903734 0.10503325 -0.3004114
-1.3854568 -0.01692022 -0.4388664 -0.42163098 -0.09182278 -0.28269592
-0.33082992 -1.147654 -0.6703184 0.33038092 -0.50087476 1.1643585
0.96983343 1.3400391 1.0692116 -0.7623776 -0.6083422 -0.91371405
0.10002492]]
I'm using numpy.argmax() to identify the correct label. The prediction works just fine. However, since these are not probabilities, I cannot compare the best result with a threshold value.
My question is, how can I define a threshold (say, 0.6), and then compare the probability of the argmax() element of the BertTransformer prediction array so that I can classify the prediction as "Other" if the probability is less than the threshold value?
Edit 1:
We are using 2 different models. One is Keras, and the other is BertTransformer. We have no problem in Keras since it gives the probabilities so I'm skipping Keras model.
The Bert model is pretrained. Here is how it is generated:
def model(self, data):
number_of_categories = len(data['encoded_categories'].unique())
model = BertForSequenceClassification.from_pretrained(
"dbmdz/bert-base-turkish-128k-uncased",
num_labels=number_of_categories,
output_attentions=False,
output_hidden_states=False,
)
# model.cuda()
return model
The output given above is the result of model.predict() method. We compare both models, Bert is slightly ahead, therefore we know that the prediction works just fine. However, we are not sure what those numbers signify or represent.
Here is the Bert documentation.
BertForSequenceClassification returns logits, i.e., the classification scores before normalization. You can normalize the scores by calling F.softmax(output, dim=-1) where torch.nn.functional was imported as F.
With thousands of labels, the normalization can be costly and you do not need it when you are only interested in argmax. This is probably why the models return the raw scores only.

what's the error using supply test set for prediction

I am trying to analyze the titanic dataset and build a predictive model. I have preprocessed the datasets. Now while I am trying to predict using the test set and I don't know why it doesn't show any result.
Titanic_test.arff
Titanic_train.afff
If you open the two files (training and test set) you will notice a difference: in the training set the last column has value 0 or 1, whereas in the test set it has ? (undefined).
This means that your test set doesn't contain the answers, therefore Weka cannot do any evaluation. It could do predictions though.

what does lightgbm python Dataset reference parameter mean?

I am trying to figure out how to train a gbdt classifier with lightgbm in python, but getting confused with the example provided on the official website.
Following the steps listed, I find that the validation_data comes from nowhere and there is no clue about the format of the valid_data nor the merit or avail of training model with or without it.
Another question comes with it is that, in the documentation, it is said that "the validation data should be aligned with training data", while I look into the Dataset details, I find that there is another statement shows that "If this is Dataset for validation, training data should be used as reference".
My final questions are, why should validation data be aligned with training data? what is the meaning of reference in Dataset and how is it used during training? is the alignment goal accomplished with reference set to training data? what is the difference between this "reference" strategy and cross-validation?
Hope someone could help me out of this maze, thanks!
The idea of "validation data should be aligned with training data" is simple :
every preprocessing you do to the training data, you should do it the same way for validation data and in production of course. This apply to every ML algorithm.
For example, for neural network, you will often normalize your training inputs (substract by mean and divide by std).
Suppose you have a variable "age" with mean 26yo in training. It will be mapped to "0" for the training of your neural network. For validation data, you want to normalize in the same way as training data (using mean of training and std of training) in order that 26yo in validation is still mapped to 0 (same value -> same prediction).
This is the same for LightGBM. The data will be "bucketed" (in short, every continuous value will be discretized) and you want to map the continuous values to the same bins in training and in validation. Those bins will be calculated using the "reference" dataset.
Regarding training without validation, this is something you don't want to do most of the time! It is very easy to overfit the training data with boosted trees if you don't have a validation to adjust parameters such as "num_boost_round".
still everything is tricky
can you share full example with using and without using this "reference="
for example
will it be different
import lightgbm as lgbm
importance_type_LGB = 'gain'
d_train = lgbm.Dataset(train_data_with_NANs, label= target_train)
d_valid = lgbm.Dataset(train_data_with_NANs, reference= target_train)
lgb_clf = lgbm.LGBMClassifier(class_weight = 'balanced' ,importance_type = importance_type_LGB)
lgb_clf.fit(test_data_with_NANs,target_train)
test_data_predict_proba_lgb = lgb_clf.predict_proba(test_data_with_NANs)
from
import lightgbm as lgbm
importance_type_LGB = 'gain'
lgb_clf = lgbm.LGBMClassifier(class_weight = 'balanced' ,importance_type = importance_type_LGB)
lgb_clf.fit(test_data_with_NANs,target_train)
test_data_predict_proba_lgb = lgb_clf.predict_proba(test_data_with_NANs)

Weka Classification

I was trying to data model a Classification Machine Learning algorithm on a data set which has 32 attributes,the last column being Target class.I refined the attributes number in to 6 from 32 ,which I felt would be more useful for my Classification model.
I tried to perform J48 and some incremental classification algorithm.
I expected output structure which consists of confusion matrix,correctlt and incorrectly classified instances,kappa value.
But my result did not give any information on Correctly and Incorrectly classified instances.Also,it did not predict confusion matrix and Kappa value.All I received is like this:
=== Summary ===
Correlation coefficient 0.9482
Mean absolute error 0.2106
Root mean squared error 0.5673
Relative absolute error 13.4077 %
Root relative squared error 31.9157 %
Total Number of Instances 1461
Can anyone tell me why I did not get Confusion matrix,kappa and Correct,Incorrect instances information.
Unfortunately you didnt write your code, or what version of weka do you apply.
BTW, to calculate confusion mtx, kappa etc. you can use methods of Evaluation class, http://weka.sourceforge.net/doc.dev/weka/classifiers/Evaluation.html
for example, after you train your model:
classifier.buildClassifier(train); \\train is an instances
Evaluation eval = new Evaluation(train);
//evaulate your model at 10 fold cross validation manner
eval.crossValidateModel(classifier, train, 10, new Random(1));
System.out.println(classifier);
//print different stats with
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());
System.out.println(eval.toClassDetailsString());

Predicting text data labels in test data set with Weka?

I am using the Weka gui to train a SVM classifier (using libSVM) on a dataset. The data in the .arff file is
#relation Expandtext
#attribute message string
#attribute Class {positive, negative, objective}
#data
I turn it into a bag of words with String-to-Word Vector, run SVM and get a decent classification rate. Now I have my test data I want to predict their labels which I do not know. Again it's header information is the same but for every class it is labeled with a question mark (?) ie
'Musical awareness: Great Big Beautiful Tomorrow has an ending\u002c Now is the time does not', ?
Again I pre-processed it, string-to-word-vector, class is in the same position as the training data.
I go to the "classify" menu, load up my trained SVM model, select "supplied test data", load in the test data and right click on the model saying "Re-evaluate model on current test set" but it gives me the error that test and train are not compatible. I am not sure why.
Am I going about this the wrong way to label the test data? What am I doing wrong?
For almost any machine learning algorithm, the training data and the test data need to have the same format. That means, both must have the same features, i.e. attributes in weka, in the same format, including the class.
The problem is probably that you pre-process the training set and the test set independently, and the StrintToWordVectorFilter will create different features for each set. Hence, the model, trained on the training set, is incompatible to the test set.
What you rather want to do is initialize the filter on the training set and then apply it on both training and test set.
The question Weka: ReplaceMissingValues for a test file deals with this issue, but I'll repeat the relevant part here:
Instances train = ... // from somewhere
Instances test = ... // from somewhere
Filter filter = new StringToWordVector(); // could be any filter
filter.setInputFormat(train); // initializing the filter once with training set
Instances newTrain = Filter.useFilter(train, filter); // configures the Filter based on train instances and returns filtered instances
Instances newTest = Filter.useFilter(test, filter); // create new test set
Now, you can train the SVM and apply the resulting model on the test data.
If training and testing have to be in separate runs or programs, it should be possible to serialize the initialized filter together with the model. When you load (deserialize) the model, you can also load the filter and apply it on the test data. They should be compatibel now.

Resources