Maxima function that check if each elements satisfies a condition - maxima

I have a lot of code like this:
ans: [[1,2,3,4],[1,2,3]];
condition: length(sublist(ans, lambda([u], length(u) = 4)) # length(ans));
In other languages the standard library provides a function like any or every to check for conditions like this. Does maxima provide a function like this? I'm searching for a function that could express the above in the following way:
ans: [[1,2,3,4],[1,2,3]];
condition: every(ans, lambda([u], length(u) = 4));

There is, indeed, an every in maxima:
every(lambda([u], length(u) = 4), [[1,2,3,4],[3,4,5,6],[1,1,1,1]]);
true
every(lambda([u], length(u) = 4), ans);
false

Related

How to write a recursive anonymous function in Dart

Lets say I wanted to write a recursive anonymous function to calculate factorial values.
print(((int a) => a == 1? 1 : a * this(a - 1))(4));
I would expect this to print 24, which is 4! (this function is obviously prone to issues with negative numbers, but that's beside the point)
The problem is that this doesn't refer to the anonymous function in order to make a recursive call.
Is this something that's possible in dart? I've seen it in python before, where a function is assigned to a variable with the walrus operator ( := ) and is also recursive.
Here is an example that creates a list of the average value on each level of a binary tree:
return (get_levels := lambda l: ([mean(node.val for node in l)] + get_levels([child for node in l for child in [node.left, node.right] if child])) if l else [])([root])
As you can see, the lambda is called get_levels. It calculates the average of the current level, then makes a recursive call on the next level of the binary tree and appends it to the list of previous level averages.
The closest that I could come up with is this:
var getLevels;
List<double> averageOfLevels(TreeNode? root) {
return root == null ? [] : (getLevels = (List<TreeNode> level) => level.isNotEmpty ? <double>[level.map((node) => node.val).fold(0, (int l, int r) => l+r) / level.length] + getLevels([for(var node in level) ...[node.left, node.right]].whereType<TreeNode>().toList()) : <double>[])([root]);
}
But, as you can see, this required an additional line where the variable is defined ahead of time.
Is it possible to achieve something more similar to the python example using callable classes?
There's a classic Lisp/Scheme problem of how to create a recursive lambda. The same technique of creating one anonymous function that takes itself as an argument and then using another anonymous function to pass the first anonymous function to itself can be applied to Dart (albeit by sacrificing some type-safety; I can't think of a way to strongly type a Function that takes its own type as an argument). For example, a recursive factorial implementation:
void main() {
var factorial = (Function f, int x) {
return f(f, x);
}((Function self, int x) {
return (x <= 1) ? 1 : x * self(self, x - 1);
}, 4);
print('4! = $factorial'); // Prints: 4! = 24
}
All that said, this seems like a pretty contrived, academic problem. In practice, just create a named function. It can be a local function if you want to avoid polluting a global namespace. It would be far more readable and maintainable.
Is it possible to achieve something more similar to the python example using callable classes?
I'm not sure where you're going with that since Dart neither allows defining anonymous classes nor local classes, so even if you made a callable class, it would violate your request for being anonymous.

How to compare two expression in z3?

I am wondering how to compare two expressions in C++ z3. The following code generates two equal expressions, but the result shows they do not share the same id, which is different from this post. A way to do this is to simplify before checking but the speed is slow due to the simplify overhead. Is there an efficient way to solve it?
z3::context c;
z3::expr z1 = c.bool_const("z1");
z3::expr z2 = c.bool_const("z2");
z3::expr z11 = z1 && z2;
z3::expr z22 = z2 && z1;
auto res = Z3_is_eq_ast(c, z11, z22);
Simple answer: No.
Note that two terms that are semantically identical can still yield False, even after a call to simplify. The only way to check equivalence for sure is to call check_sat.
The way to think about Z3_is_eq_ast is that if it says True, then you absolutely have the same term. If it says False, then it may or may not be the same term, you just don't know. (It's essentially hash-consing, an old idea, and all the caveats apply. See here: https://en.wikipedia.org/wiki/Hash_consing).

Evaluate a symbolic expression inside a MathematicalProgram constraint

I want to use a symbolic expression as a MathematicalProgram constraint but am unsure how to achieve this. My best go so far is the following (simplified example):
x = Variable("x")
expression = x**2
prog = MathematicalProgram()
v = prog.NewContinuousVariables(1)
prog.AddConstraint(
lambda a: Evaluate(np.array([expression]), {x: a[0].value()}),
lb=np.array([0.0]),
ub=np.array([0.0]),
vars=v,
)
result = Solve(prog)
I'm getting the error PyFunctionConstraint: Output must be of scalar type AutoDiffXd. Got float instead.. Using lambda a: Evaluate(np.array([expression]), {x: a[0]}) does not work due to incompatible function arguments.
I'd highly appreciate any help with this.
I don't think we currently support adding symbolic::Expression as constraint in pydrake yet. On the other hand, we do support ExpressionConstraint in C++ version of Drake.
May I ask why you would like to impose the constraint using symbolic Expression? It is generally much faster to evaluate the constraint, if pass a function directly, something like this
def foo(x):
return np.array([x[0] **2])
prog.AddConstraint(foo, np.array([0.]), np.array([0.]), vars=v)
#Hongkai Dai's answer with the ExpressionConstraint in C++ led me in the right direction. There is such a constraint in pydrake (see here). However, it currently does not support array inputs. The second required insight was that it is possible to use prog.NewContinuousVariables in symbolic expression operations (e.g. Jacobian).
Using these insights, I solved my problem with something similar to the following:
prog = MathematicalProgram()
x = prog.NewContinuousVariables(2)
expression = x[0]**2
J = expression.Jacobian([x[0]])
for i in range(2):
prog.AddConstraint(J[i], 0.0, 0.0)
result = Solve(prog)

Can Z3 call python function during decision making of variables?

I am trying to solve a problem, for example I have a 4 point and each two point has a cost between them. Now I want to find a sequence of nodes which total cost would be less than a bound. I have written a code but it seems not working. The main problem is I have define a python function and trying to call it with in a constraint.
Here is my code: I have a function def getVal(n1,n2): where n1, n2 are Int Sort. The line Nodes = [ Int("n_%s" % (i)) for i in range(totalNodeNumber) ] defines 4 points as Int sort and when I am adding a constraint s.add(getVal(Nodes[0], Nodes[1]) + getVal(Nodes[1], Nodes[2]) < 100) then it calls getVal function immediately. But I want that, when Z3 will decide a value for Nodes[0], Nodes[1], Nodes[2], Nodes[3] then the function should be called for getting the cost between to points.
from z3 import *
import random
totalNodeNumber = 4
Nodes = [ Int("n_%s" % (i)) for i in range(totalNodeNumber) ]
def getVal(n1,n2):
# I need n1 and n2 values those assigned by Z3
cost = random.randint(1,20)
print cost
return IntVal(cost)
s = Solver()
#constraint: Each Nodes value should be distinct
nodes_index_distinct_constraint = Distinct(Nodes)
s.add(nodes_index_distinct_constraint)
#constraint: Each Nodes value should be between 0 and totalNodeNumber
def get_node_index_value_constraint(i):
return And(Nodes[i] >= 0, Nodes[i] < totalNodeNumber)
nodes_index_constraint = [ get_node_index_value_constraint(i) for i in range(totalNodeNumber)]
s.add(nodes_index_constraint)
#constraint: Problem with this constraint
# Here is the problem it's just called python getVal function twice without assiging Nodes[0],Nodes[1],Nodes[2] values
# But I want to implement that - Z3 will call python function during his decission making of variables
s.add(getVal(Nodes[0], Nodes[1]) + getVal(Nodes[1], Nodes[2]) + getVal(Nodes[2], Nodes[3]) < 100)
if s.check() == sat:
print "SAT"
print "Model: "
m = s.model()
nodeIndex = [ m.evaluate(Nodes[i]) for i in range(totalNodeNumber) ]
print nodeIndex
else:
print "UNSAT"
print "No solution found !!"
If this is not a right way to solve the problem then could you please tell me what would be other alternative way to solve it. Can I encode this kind of problem to find optimal sequence of way points using Z3 solver?
I don't understand what problem you need to solve. Definitely, the way getVal is formulated does not make sense. It does not use the arguments n1, n2. If you want to examine values produced by a model, then you do this after Z3 returns from a call to check().
I don't think you can use a python function in your SMT logic. What you could alternatively is define getVal as a Function like this
getVal = Function('getVal',IntSort(),IntSort(),IntSort())
And constraint the edge weights as
s.add(And(getVal(0,1)==1,getVal(1,2)==2,getVal(0,2)==3))
The first two input parameters of getVal represent the node ids and the last integer represents the weight.

matlab indexing into nameless matrix [duplicate]

For example, if I want to read the middle value from magic(5), I can do so like this:
M = magic(5);
value = M(3,3);
to get value == 13. I'd like to be able to do something like one of these:
value = magic(5)(3,3);
value = (magic(5))(3,3);
to dispense with the intermediate variable. However, MATLAB complains about Unbalanced or unexpected parenthesis or bracket on the first parenthesis before the 3.
Is it possible to read values from an array/matrix without first assigning it to a variable?
It actually is possible to do what you want, but you have to use the functional form of the indexing operator. When you perform an indexing operation using (), you are actually making a call to the subsref function. So, even though you can't do this:
value = magic(5)(3, 3);
You can do this:
value = subsref(magic(5), struct('type', '()', 'subs', {{3, 3}}));
Ugly, but possible. ;)
In general, you just have to change the indexing step to a function call so you don't have two sets of parentheses immediately following one another. Another way to do this would be to define your own anonymous function to do the subscripted indexing. For example:
subindex = #(A, r, c) A(r, c); % An anonymous function for 2-D indexing
value = subindex(magic(5), 3, 3); % Use the function to index the matrix
However, when all is said and done the temporary local variable solution is much more readable, and definitely what I would suggest.
There was just good blog post on Loren on the Art of Matlab a couple days ago with a couple gems that might help. In particular, using helper functions like:
paren = #(x, varargin) x(varargin{:});
curly = #(x, varargin) x{varargin{:}};
where paren() can be used like
paren(magic(5), 3, 3);
would return
ans = 16
I would also surmise that this will be faster than gnovice's answer, but I haven't checked (Use the profiler!!!). That being said, you also have to include these function definitions somewhere. I personally have made them independent functions in my path, because they are super useful.
These functions and others are now available in the Functional Programming Constructs add-on which is available through the MATLAB Add-On Explorer or on the File Exchange.
How do you feel about using undocumented features:
>> builtin('_paren', magic(5), 3, 3) %# M(3,3)
ans =
13
or for cell arrays:
>> builtin('_brace', num2cell(magic(5)), 3, 3) %# C{3,3}
ans =
13
Just like magic :)
UPDATE:
Bad news, the above hack doesn't work anymore in R2015b! That's fine, it was undocumented functionality and we cannot rely on it as a supported feature :)
For those wondering where to find this type of thing, look in the folder fullfile(matlabroot,'bin','registry'). There's a bunch of XML files there that list all kinds of goodies. Be warned that calling some of these functions directly can easily crash your MATLAB session.
At least in MATLAB 2013a you can use getfield like:
a=rand(5);
getfield(a,{1,2}) % etc
to get the element at (1,2)
unfortunately syntax like magic(5)(3,3) is not supported by matlab. you need to use temporary intermediate variables. you can free up the memory after use, e.g.
tmp = magic(3);
myVar = tmp(3,3);
clear tmp
Note that if you compare running times with the standard way (asign the result and then access entries), they are exactly the same.
subs=#(M,i,j) M(i,j);
>> for nit=1:10;tic;subs(magic(100),1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0103
>> for nit=1:10,tic;M=magic(100); M(1:10,1:10);tlap(nit)=toc;end;mean(tlap)
ans =
0.0101
To my opinion, the bottom line is : MATLAB does not have pointers, you have to live with it.
It could be more simple if you make a new function:
function [ element ] = getElem( matrix, index1, index2 )
element = matrix(index1, index2);
end
and then use it:
value = getElem(magic(5), 3, 3);
Your initial notation is the most concise way to do this:
M = magic(5); %create
value = M(3,3); % extract useful data
clear M; %free memory
If you are doing this in a loop you can just reassign M every time and ignore the clear statement as well.
To complement Amro's answer, you can use feval instead of builtin. There is no difference, really, unless you try to overload the operator function:
BUILTIN(...) is the same as FEVAL(...) except that it will call the
original built-in version of the function even if an overloaded one
exists (for this to work, you must never overload
BUILTIN).
>> feval('_paren', magic(5), 3, 3) % M(3,3)
ans =
13
>> feval('_brace', num2cell(magic(5)), 3, 3) % C{3,3}
ans =
13
What's interesting is that feval seems to be just a tiny bit quicker than builtin (by ~3.5%), at least in Matlab 2013b, which is weird given that feval needs to check if the function is overloaded, unlike builtin:
>> tic; for i=1:1e6, feval('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 49.904117 seconds.
>> tic; for i=1:1e6, builtin('_paren', magic(5), 3, 3); end; toc;
Elapsed time is 51.485339 seconds.

Resources