Match brackets the kotlin way - parsing

I'm giving Kotlin a go; coding contently, I have an ArrayList of chars which i want to classify depending on how brackets are matched:
(abcde) // ok characters other than brackets can go anywhere
)abcde( // ok matching the brackets 'invertedly' are ok
(({()})) // ok
)()()([] // ok
([)] // bad can't have different overlapping bracket pairs
((((( // bad all brackets need to have a match
My solution comes out(recursive):
//charList is a property
//Recursion starter'upper
private fun classifyListOfCharacters() : Boolean{
var j = 0
while (j < charList.size ) {
if (charList[j].isBracket()){
j = checkMatchingBrackets(j+1, charList[j])
}
j++
}
return j == commandList.size
}
private fun checkMatchingBrackets(i: Int, firstBracket :Char) : Int{
var j = i
while (j < charList.size ) {
if (charList[j].isBracket()){
if (charList[j].matchesBracket(firstBracket)){
return j //Matched bracket normal/inverted
}
j = checkMatchingBrackets(j+1, charList[j])
}
j++
}
return j
}
This works, but is this how you do it in Kotlin? It feels like I've coded java in Kotlin syntax
Found this Functional languages better at recursion, I've tried thinking in terms of manipulating functions and sending them down the recursion but to no avail. I'd be glad to be pointed in the right direction, code, or some pseudo-code of a possible refactoring.
(Omitted some extension methods regarding brackets, I think it's clear what they do)

Another, possibly a simpler approach to this problem is maintaining a stack of brackets while you iterate over the characters.
When you encounter another bracket:
If it matches the top of the stack, you pop the top of the stack;
If it does not match the top of the stack (or the stack is empty), you push it onto the stack.
If any brackets remain on the stack at the end, it means they are unmatched, and the answer is false. If the stack ends up empty, the answer is true.
This is correct, because a bracket at position i in a sequence can match another one at position j, only if there's no unmatched bracket of a different kind between them (at position k, i < k < j). The stack algorithm simulates exactly this logic of matching.
Basically, this algorithm could be implemented in a single for-loop:
val stack = Stack<Char>()
for (c in charList) {
if (!c.isBracket())
continue
if (stack.isNotEmpty() && c.matchesBracket(stack.peek())) {
stack.pop()
} else {
stack.push(c)
}
}
return stack.isEmpty()
I've reused your extensions c.isBracket(...) and c.matchesBracket(...). The Stack<T> is a JDK class.
This algorithm hides the recursion and the brackets nesting inside the abstraction of the brackets stack. Compare: your current approach implicitly uses the function call stack instead of the brackets stack, but the purpose is the same: it either finds a match for the top character or makes a deeper recursive call with another character on top.

Hotkey's answer (using a for loop) is great. However, you asked for an optimized recursion solution. Here is an optimized tail recursive function (Note the tailrec modifier before the function):
tailrec fun isBalanced(input: List<Char>, stack: Stack<Char>): Boolean = when {
input.isEmpty() -> stack.isEmpty()
else -> {
val c = input.first()
if (c.isBracket()) {
if (stack.isNotEmpty() && c.matchesBracket(stack.peek())) {
stack.pop()
} else {
stack.push(c)
}
}
isBalanced(input.subList(1, input.size), stack)
}
}
fun main(args: Array<String>) {
println("check: ${isBalanced("(abcde)".toList(), Stack())}")
}
This function calls itself until the input becomes empty and returns true if the stack is empty when the input becomes empty.
If we look at the decompiled Java equivalent of the generated bytecode, this recursion has been optimized to an efficient while loop by the compiler so we won't get StackOverflowException (removed Intrinsics null checks):
public static final boolean isBalanced(#NotNull String input, #NotNull Stack stack) {
while(true) {
CharSequence c = (CharSequence)input;
if(c.length() == 0) {
return stack.isEmpty();
}
char c1 = StringsKt.first((CharSequence)input);
if(isBracket(c1)) {
Collection var3 = (Collection)stack;
if(!var3.isEmpty() && matchesBracket(c1, ((Character)stack.peek()).charValue())) {
stack.pop();
} else {
stack.push(Character.valueOf(c1));
}
}
input = StringsKt.drop(input, 1);
}
}

Related

Destructured iteration over variadic arguments like a tuple sequence in D

Let's say I want to process a variadic function which alternately gets passed start and end values of 1 or more intervals and it should return a range of random values in those intervals. You can imagine the input to be a flattened sequence of tuples, all tuple elements spread over one single range.
import std.meta; //variadic template predicates
import std.traits : isFloatingPoint;
import std.range;
auto randomIntervals(T = U[0], U...)(U intervals)
if (U.length/2 > 0 && isFloatingPoint!T && NoDuplicates!U.length == 1) {
import std.random : uniform01;
T[U.length/2] randomValues;
// split and iterate over subranges of size 2
foreach(i, T start, T end; intervals.chunks(2)) { //= intervals.slide(2,2)
randomValues[i] = uniform01 * (end - start) + start,
}
return randomValues.dup;
}
The example is not important, I only use it for explanation. The chunk size could be any finite positive size_t, not only 2 and changing the chunk size should only require changing the number of loop-variables in the foreach loop.
In this form above it will not compile since it would only expect one argument (a range) to the foreach loop. What I would like is something which rather automatically uses or infers a sliding-window as a tuple, derived from the number of given loop-variables, and fills the additional variables with next elements of the range/array + allows for an additional index, optionally. According to the documentation a range of tuples allows destructuring of the tuple elements in place into foreach-loop-variables so the first thing, I thought about, is turning a range into a sequence of tuples but didn't find a convenience function for this.
Is there a simple way to loop over destructured subranges (with such a simplicity as shown in my example code) together with the index? Or is there a (standard library) function which does this job of splitting a range into enumerated tuples of equal size? How to easily turn the range of subranges into a range of tuples?
Is it possible with std.algorithm.iteration.map in this case (EDIT: with a simple function argument to map and without accessing tuple elements)?
EDIT: I want to ignore the last chunk which doesn't fit into the entire tuple. It just is not iterated over.
EDIT: It's not, that I couldn't program this myself, I only hope for a simple notation because this use case of looping over multiple elements is quite useful. If there is something like a "spread" or "rest" operator in D like in JavaScript, please let me know!
Thank you.
(Added as a separate answer because it's significantly different from my previous answer, and wouldn't fit in a comment)
After reading your comments and the discussion on the answers thus far, it seems to me what you seek is something like the below staticChunks function:
unittest {
import std.range : enumerate;
size_t index = 0;
foreach (i, a, b, c; [1,2,3,1,2,3].staticChunks!3.enumerate) {
assert(a == 1);
assert(b == 2);
assert(c == 3);
assert(i == index);
++index;
}
}
import std.range : isInputRange;
auto staticChunks(size_t n, R)(R r) if (isInputRange!R) {
import std.range : chunks;
import std.algorithm : map, filter;
return r.chunks(n).filter!(a => a.length == n).map!(a => a.tuplify!n);
}
auto tuplify(size_t n, R)(R r) if (isInputRange!R) {
import std.meta : Repeat;
import std.range : ElementType;
import std.typecons : Tuple;
import std.array : front, popFront, empty;
Tuple!(Repeat!(n, ElementType!R)) result;
static foreach (i; 0..n) {
result[i] = r.front;
r.popFront();
}
assert(r.empty);
return result;
}
Note that this also deals with the last chunk being a different size, if only by silently throwing it away. If this behavior is undesirable, remove the filter, and deal with it inside tuplify (or don't, and watch the exceptions roll in).
chunks and slide return Ranges, not tuples. Their last element can contain less than the specified size, whereas tuples have a fixed compile time size.
If you need destructuring, you have to implement your own chunks/slide that return tuples. To explicitly add an index to the tuple, use enumerate. Here is an example:
import std.typecons, std.stdio, std.range;
Tuple!(int, int)[] pairs(){
return [
tuple(1, 3),
tuple(2, 4),
tuple(3, 5)
];
}
void main(){
foreach(size_t i, int start, int end; pairs.enumerate){
writeln(i, ' ', start, ' ', end);
}
}
Edit:
As BioTronic said using map is also possible:
foreach(i, start, end; intervals
.chunks(2)
.map!(a => tuple(a[0], a[1]))
.enumerate){
Your question has me a little confused, so I'm sorry if I've misunderstood. What you're basically asking is if foreach(a, b; [1,2,3,4].chunks(2)) could work, right?
The simple solution here is to, as you say, map from chunk to tuple:
import std.typecons : tuple;
import std.algorithm : map;
import std.range : chunks;
import std.stdio : writeln;
unittest {
pragma(msg, typeof([1,2].chunks(2).front));
foreach(a, b; [1,2,3,4].chunks(2).map!(a => tuple(a[0], a[1]))) {
writeln(a, ", ", b);
}
}
At the same time with BioTronic, I tried to code some own solution to this problem (tested on DMD). My solution works for slices (BUT NOT fixed-size arrays) and avoids a call to filter:
import std.range : chunks, isInputRange, enumerate;
import std.range : isRandomAccessRange; //changed from "hasSlicing" to "isRandomAccessRange" thanks to BioTronics
import std.traits : isIterable;
/** turns chunks into tuples */
template byTuples(size_t N, M)
if (isRandomAccessRange!M) { //EDITED
import std.meta : Repeat;
import std.typecons : Tuple;
import std.traits : ForeachType;
alias VariableGroup = Tuple!(Repeat!(N, ForeachType!M)); //Tuple of N repititions of M's Foreach-iterated Type
/** turns N consecutive array elements into a Variable Group */
auto toTuple (Chunk)(Chunk subArray) #nogc #safe pure nothrow
if (isInputRange!Chunk) { //Chunk must be indexable
VariableGroup nextLoopVariables; //fill the tuple with static foreach loop
static foreach(index; 0 .. N) {
static if ( isRandomAccessRange!Chunk ) { // add cases for other ranges here
nextLoopVariables[index] = subArray[index];
} else {
nextLoopVariables[index] = subArray.popFront();
}
}
return nextLoopVariables;
}
/** returns a range of VariableGroups */
auto byTuples(M array) #safe pure nothrow {
import std.algorithm.iteration : map;
static if(!isInputRange!M) {
static assert(0, "Cannot call map() on fixed-size array.");
// auto varGroups = array[].chunks(N); //fixed-size arrays aren't slices by default and cannot be treated like ranges
//WARNING! invoking "map" on a chunk range from fixed-size array will fail and access wrong memory with no warning or exception despite #safe!
} else {
auto varGroups = array.chunks(N);
}
//remove last group if incomplete
if (varGroups.back.length < N) varGroups.popBack();
//NOTE! I don't know why but `map!toTuple` DOES NOT COMPILE! And will cause a template compilation mess.
return varGroups.map!(chunk => toTuple(chunk)); //don't know if it uses GC
}
}
void main() {
testArrayToTuples([1, 3, 2, 4, 5, 7, 9]);
}
// Order of template parameters is relevant.
// You must define parameters implicitly at first to be associated with a template specialization
void testArrayToTuples(U : V[], V)(U arr) {
double[] randomNumbers = new double[arr.length / 2];
// generate random numbers
foreach(i, double x, double y; byTuples!2(arr).enumerate ) { //cannot use UFCS with "byTuples"
import std.random : uniform01;
randomNumbers[i] = (uniform01 * (y - x) + x);
}
foreach(n; randomNumbers) { //'n' apparently works despite shadowing a template parameter
import std.stdio : writeln;
writeln(n);
}
}
Using elementwise operations with the slice operator would not work here because uniform01 in uniform01 * (ends[] - starts[]) + starts[] would only be called once and not multiple times.
EDIT: I also tested some online compilers for D for this code and it's weird that they behave differently for the same code. For compilation of D I can recommend
https://run.dlang.io/ (I would be very surprised if this one wouldn't work)
https://www.mycompiler.io/new/d (but a bit slow)
https://ideone.com (it works but it makes your code public! Don't use with protected code.)
but those didn't work for me:
https://tio.run/#d2 (didn't finish compilation in one case, otherwise wrong results on execution even when using dynamic array for the test)
https://www.tutorialspoint.com/compile_d_online.php (doesn't compile the static foreach)

Why does this Rascal pattern matching code use so much memory and time?

I'm trying to write what I would think of as an extremely simple piece of code in Rascal: Testing if list A contains list B.
Starting out with some very basic code to create a list of strings
public list[str] makeStringList(int Start, int End)
{
return [ "some string with number <i>" | i <- [Start..End]];
}
public list[str] toTest = makeStringList(0, 200000);
My first try was 'inspired' by the sorting example in the tutor:
public void findClone(list[str] In, str S1, str S2, str S3, str S4, str S5, str S6)
{
switch(In)
{
case [*str head, str i1, str i2, str i3, str i4, str i5, str i6, *str tail]:
{
if(S1 == i1 && S2 == i2 && S3 == i3 && S4 == i4 && S5 == i5 && S6 == i6)
{
println("found duplicate\n\t<i1>\n\t<i2>\n\t<i3>\n\t<i4>\n\t<i5>\n\t<i6>");
}
fail;
}
default:
return;
}
}
Not very pretty, but I expected it to work. Unfortunately, the code runs for about 30 seconds before crashing with an "out of memory" error.
I then tried a better looking alternative:
public void findClone2(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *str mid, *str end] := In)
if (mid == whatWeSearchFor)
println("gotcha");
}
with approximately the same result (seems to run a little longer before running out of memory)
Finally, I tried a 'good old' C-style approach with a for-loop
public void findClone3(list[str] In, list[str] whatWeSearchFor)
{
cloneLength = size(whatWeSearchFor);
inputLength = size(In);
if(inputLength < cloneLength) return [];
loopLength = inputLength - cloneLength + 1;
for(int i <- [0..loopLength])
{
isAClone = true;
for(int j <- [0..cloneLength])
{
if(In[i+j] != whatWeSearchFor[j])
isAClone = false;
}
if(isAClone) println("Found clone <whatWeSearchFor> on lines <i> through <i+cloneLength-1>");
}
}
To my surprise, this one works like a charm. No out of memory, and results in seconds.
I get that my first two attempts probably create a lot of temporary string objects that all have to be garbage collected, but I can't believe that the only solution that worked really is the best solution.
Any pointers would be greatly appreciated.
My relevant eclipse.ini settings are
-XX:MaxPermSize=512m
-Xms512m
-Xss64m
-Xmx1G
We'll need to look to see why this is happening. Note that, if you want to use pattern matching, this is maybe a better way to write it:
public void findClone(list[str] In, str S1, str S2, str S3, str S4, str S5, str S6) {
switch(In) {
case [*str head, S1, S2, S3, S4, S5, S6, *str tail]: {
println("found duplicate\n\t<S1>\n\t<S2>\n\t<S3>\n\t<S4>\n\t<S5>\n\t<S6>");
}
default:
return;
}
}
If you do this, you are taking advantage of Rascal's matcher to actually find the matching strings directly, versus your first example in which any string would match but then you needed to use a number of separate comparisons to see if the match represented the combination you were looking for. If I run this on 110145 through 110150 it takes a while but works and it doesn't seem to grow beyond the heap space you allocated to it.
Also, is there a reason you are using fail? Is this to continue searching?
It's an algorithmic issue like Mark Hills said. In Rascal some short code can still entail a lot of nested loops, almost implicitly. Basically every * splice operator on a fresh variable that you use on the pattern side in a list generates one level of loop nesting, except for the last one which is just the rest of the list.
In your code of findClone2 you are first generating all combinations of sublists and then filtering them using the if construct. So that's a correct algorithm, but probably slow. This is your code:
void findClone2(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *str mid, *str end] := In)
if (mid == whatWeSearchFor)
println("gotcha");
}
You see how it has a nested loop over In, because it has two effective * operators in the pattern. The code runs therefore in O(n^2), where n is the length of In. I.e. it has quadratic runtime behaviour for the size of the In list. In is a big list so this matters.
In the following new code, we filter first while generating answers, using fewer lines of code:
public void findCloneLinear(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *whatWeSearchFor, *str end] := In)
println("gotcha");
}
The second * operator does not generate a new loop because it is not fresh. It just "pastes" the given list values into the pattern. So now there is actually only one effective * which generates a loop which is the first on head. This one makes the algorithm loop over the list. The second * tests if the elements of whatWeSearchFor are all right there in the list after head (this is linear in the size of whatWeSearchFor and then the last *_ just completes the list allowing for more stuff to follow.
It's also nice to know where the clone is sometimes:
public void findCloneLinear(list[str] In, list[str] whatWeSearchFor)
{
for ([*head, *whatWeSearchFor, *_] := In)
println("gotcha at <size(head)>");
}
Rascal does not have an optimising compiler (yet) which might possibly internally transform your algorithms to equivalent optimised ones. So as a Rascal programmer you are still asked to know the effect of loops on your algorithms complexity and know that * is a very short notation for a loop.

Finding follow sets - infinite recursion

While finding follow sets, rules such as
A->aA can lead to infinite recursion. Is there any coding technique to avoid it?
Note that the above example is just an example, in practice such a recursion could happen indirectly as well.
Here is my sample C code for finding follow sets. The grammar is stored as an array of linked lists. Please tell me if the code is unclear at any point.
set findFollowSet(char nonTerminal[], Grammar G, hashTable2 h) //later assume that all first sets are already in the hashtable.
{
LINK temp1 = find2(h, nonTerminal);
set s= createEmptySet();
set temp = createEmptySet();
char lhs[80] = "\0";
int i;
//special case
if(temp1->numRightSideOf==0) //its not on right side of any grammar rule
return insert(s, "$");
for(i=0;i<temp1->numRightSideOf;i++)
{
link l = G.rules[temp1->rightSideOf[i]];
strcpy(lhs, l->symbol); //storing the lhs just in case the nonTerm appears on the rightmost end of the rule.
printf("!!!!! %s\n", lhs);
sleep(1);
//finding nonTerminal in G
while(l!=NULL)
{
if(strcmp(l->symbol, nonTerminal) == 0)
break;
l=l->next;
}
//found the nonTerminal in G
if(l->next!=NULL)
{
temp = findFirstSet(l->next, G, h);
temp = removeElement(temp, "EPSILON");
}
else //its on the rightmost end of the rule
temp = findFollowSet(lhs, G, h);
s = setUnion(s, temp); destroySet(temp);
}
return s;
}
FIRST and FOLLOW sets are defined recursively, so you need to find the recursive closure. What this mean in practice is that you don't find the FOLLOW set for a single non-terminal -- you find all the FOLLOW sets for all the terminals simultaneously, by starting with all sets empty and going over the grammar adding symbols to different sets, until no more symbols can be added to any set. So you end up with something like:
FOLLOW[*] = {}; // all follow sets start empty
done = false;
while (!done)
done = true;
for (R : each rule in the grammar)
A = RHS[R];
tmp = FOLLOW[A];
for (S : each symbol in LHS[R] from right to left)
if (S is terminal)
tmp = {S};
else
if (!(FOLLOW[S] contains tmp))
done = false
FOLLOW[S] |= tmp
if (epsilon in FIRST[S])
tmp |= FIRST[S] - epsilon
else
tmp = FIRST[S]
Ok I got the answer but its inefficient.
So if anyone wants to suggest some more efficient answer, please feel welcomed.
Just store the recursion stack explicitly and at each recursive call, check if the entry already exists in the stack.
Mind you, you need to check the entire stack not just the top of it.

Any suggestions about how to implement a BASIC language parser/interpreter?

I've been trying to implement a BASIC language interpreter (in C/C++) but I haven't found any book or (thorough) article which explains the process of parsing the language constructs. Some commands are rather complex and hard to parse, especially conditionals and loops, such as IF-THEN-ELSE and FOR-STEP-NEXT, because they can mix variables with constants and entire expressions and code and everything else, for example:
10 IF X = Y + Z THEN GOTO 20 ELSE GOSUB P
20 FOR A = 10 TO B STEP -C : PRINT C$ : PRINT WHATEVER
30 NEXT A
It seems like a nightmare to be able to parse something like that and make it work. And to make things worse, programs written in BASIC can easily be a tangled mess. That's why I need some advice, read some book or whatever to make my mind clear about this subject. What can you suggest?
You've picked a great project - writing interpreters can be lots of fun!
But first, what do we even mean by an interpreter? There are different types of interpreters.
There is the pure interpreter, where you simply interpret each language element as you find it. These are the easiest to write, and the slowest.
A step up, would be to convert each language element into some sort of internal form, and then interpret that. Still pretty easy to write.
The next step, would be to actually parse the language, and generate a syntax tree, and then interpret that. This is somewhat harder to write, but once you've done it a few times, it becomes pretty easy.
Once you have a syntax tree, you can fairly easily generate code for a custom stack virtual machine. A much harder project is to generate code for an existing virtual machine, such as the JVM or CLR.
In programming, like most engineering endeavors, careful planning greatly helps, especially with complicated projects.
So the first step is to decide which type of interpreter you wish to write. If you have not read any of a number of compiler books (e.g., I always recommend Niklaus Wirth's "Compiler Construction" as one of the best introductions to the subject, and is now freely available on the web in PDF form), I would recommend that you go with the pure interpreter.
But you still need to do some additional planning. You need to rigorously define what it is you are going to be interpreting. EBNF is great for this. For a gentile introduction EBNF, read the first three parts of a Simple Compiler at http://www.semware.com/html/compiler.html It is written at the high school level, and should be easy to digest. Yes, I tried it on my kids first :-)
Once you have defined what it is you want to be interpreting, you are ready to write your interpreter.
Abstractly, you're simple interpreter will be divided into a scanner (technically, a lexical analyzer), a parser, and an evaluator. In the simple pure interpolator case, the parser and evaluator will be combined.
Scanners are easy to write, and easy to test, so we won't spend any time on them. See the aforementioned link for info on crafting a simple scanner.
Lets (for example) define your goto statement:
gotostmt -> 'goto' integer
integer -> [0-9]+
This tells us that when we see the token 'goto' (as delivered by the scanner), the only thing that can follow is an integer. And an integer is simply a string a digits.
In pseudo code, we might handle this as so:
(token - is the current token, which is the current element just returned via the scanner)
loop
if token == "goto"
goto_stmt()
elseif token == "gosub"
gosub_stmt()
elseif token == .....
endloop
proc goto_stmt()
expect("goto") -- redundant, but used to skip over goto
if is_numeric(token)
--now, somehow set the instruction pointer at the requested line
else
error("expecting a line number, found '%s'\n", token)
end
end
proc expect(s)
if s == token
getsym()
return true
end
error("Expecting '%s', found: '%s'\n", curr_token, s)
end
See how simple it is? Really, the only hard thing to figure out in a simple interpreter is the handling of expressions. A good recipe for handling those is at: http://www.engr.mun.ca/~theo/Misc/exp_parsing.htm Combined with the aforementioned references, you should have enough to handle the sort of expressions you would encounter in BASIC.
Ok, time for a concrete example. This is from a larger 'pure interpreter', that handles a enhanced version of Tiny BASIC (but big enough to run Tiny Star Trek :-) )
/*------------------------------------------------------------------------
Simple example, pure interpreter, only supports 'goto'
------------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <setjmp.h>
#include <ctype.h>
enum {False=0, True=1, Max_Lines=300, Max_Len=130};
char *text[Max_Lines+1]; /* array of program lines */
int textp; /* used by scanner - ptr in current line */
char tok[Max_Len+1]; /* the current token */
int cur_line; /* the current line number */
int ch; /* current character */
int num; /* populated if token is an integer */
jmp_buf restart;
int error(const char *fmt, ...) {
va_list ap;
char buf[200];
va_start(ap, fmt);
vsprintf(buf, fmt, ap);
va_end(ap);
printf("%s\n", buf);
longjmp(restart, 1);
return 0;
}
int is_eol(void) {
return ch == '\0' || ch == '\n';
}
void get_ch(void) {
ch = text[cur_line][textp];
if (!is_eol())
textp++;
}
void getsym(void) {
char *cp = tok;
while (ch <= ' ') {
if (is_eol()) {
*cp = '\0';
return;
}
get_ch();
}
if (isalpha(ch)) {
for (; !is_eol() && isalpha(ch); get_ch()) {
*cp++ = (char)ch;
}
*cp = '\0';
} else if (isdigit(ch)) {
for (; !is_eol() && isdigit(ch); get_ch()) {
*cp++ = (char)ch;
}
*cp = '\0';
num = atoi(tok);
} else
error("What? '%c'", ch);
}
void init_getsym(const int n) {
cur_line = n;
textp = 0;
ch = ' ';
getsym();
}
void skip_to_eol(void) {
tok[0] = '\0';
while (!is_eol())
get_ch();
}
int accept(const char s[]) {
if (strcmp(tok, s) == 0) {
getsym();
return True;
}
return False;
}
int expect(const char s[]) {
return accept(s) ? True : error("Expecting '%s', found: %s", s, tok);
}
int valid_line_num(void) {
if (num > 0 && num <= Max_Lines)
return True;
return error("Line number must be between 1 and %d", Max_Lines);
}
void goto_line(void) {
if (valid_line_num())
init_getsym(num);
}
void goto_stmt(void) {
if (isdigit(tok[0]))
goto_line();
else
error("Expecting line number, found: '%s'", tok);
}
void do_cmd(void) {
for (;;) {
while (tok[0] == '\0') {
if (cur_line == 0 || cur_line >= Max_Lines)
return;
init_getsym(cur_line + 1);
}
if (accept("bye")) {
printf("That's all folks!\n");
exit(0);
} else if (accept("run")) {
init_getsym(1);
} else if (accept("goto")) {
goto_stmt();
} else {
error("Unknown token '%s' at line %d", tok, cur_line); return;
}
}
}
int main() {
int i;
for (i = 0; i <= Max_Lines; i++) {
text[i] = calloc(sizeof(char), (Max_Len + 1));
}
setjmp(restart);
for (;;) {
printf("> ");
while (fgets(text[0], Max_Len, stdin) == NULL)
;
if (text[0][0] != '\0') {
init_getsym(0);
if (isdigit(tok[0])) {
if (valid_line_num())
strcpy(text[num], &text[0][textp]);
} else
do_cmd();
}
}
}
Hopefully, that will be enough to get you started. Have fun!
I will certainly get beaten by telling this ...but...:
First, I am actually working on a standalone library ( as a hobby ) that is made of:
a tokenizer, building linear (flat list) of tokens from the source text and following the same sequence as the text ( lexems created from the text flow ).
A parser by hands (syntax analyse; pseudo-compiler )
There is no "pseudo-code" nor "virtual CPU/machine".
Instructions(such as 'return', 'if' 'for' 'while'... then arithemtic expressions ) are represented by a base c++-struct/class and is the object itself. The base object, I name it atom, have a virtual method called "eval", among other common members, that is the "execution/branch" also by itself. So no matter I have an 'if' statement with its possible branchings ( single statement or bloc of statements/instructions ) as true or false condition, it will be called from the base virtual atom::eval() ... and so on for everything that is an atom.
Even 'objects' such as variables are 'atom'. 'eval()' will simply return its value from a variant container held by the atom itself ( pointer, refering to the 'local' variant instance (the instance variant iself) held the 'atom' or to another variant held by an atom that is created in a given 'bloc/stack'. So 'atom' are 'inplace' instructions/objects.
As of now, as an example, chunk of not really meaningful 'code' as below just works:
r = 5!; // 5! : (factorial of 5 )
Response = 1 + 4 - 6 * --r * ((3+5)*(3-4) * 78);
if (Response != 1){ /* '<>' also is not equal op. */
return r^3;
}
else{
return 0;
}
Expressions ( arithemtics ) are built into binary tree expression:
A = b+c; =>
=
/ \
A +
/ \
b c
So the 'instruction'/statement for expression like above is the tree-entry atom that in the above case, is the '=' (binary) operator.
The tree is built with atom::r0,r1,r2 :
atom 'A' :
r0
|
A
/ \
r1 r2
Regarding 'full-duplex' mecanism between c++ runtime and the 'script' library, I've made class_adaptor and adaptor<> :
ex.:
template<typename R, typename ...Args> adaptor_t<T,R, Args...>& import_method(const lstring& mname, R (T::*prop)(Args...)) { ... }
template<typename R, typename ...Args> adaptor_t<T,R, Args...>& import_property(const lstring& mname, R (T::*prop)(Args...)) { ... }
Second: I know there are plenty of tools and libs out there such as lua, boost::bind<*>, QML, JSON, etc... But in my situation, I need to create my very own [edit] 'independant' [/edit] lib for "live scripting". I was scared that my 'interpreter' could take a huge amount of RAM, but I am surprised that it is not as big as using QML,jscript or even lua :-)
Thank you :-)
Don't bother with hacking a parser together by hand. Use a parser generator. lex + yacc is the classic lexer/parser generator combination, but a Google search will reveal plenty of others.

PEG for Python style indentation

How would you write a Parsing Expression Grammar in any of the following Parser Generators (PEG.js, Citrus, Treetop) which can handle Python/Haskell/CoffeScript style indentation:
Examples of a not-yet-existing programming language:
square x =
x * x
cube x =
x * square x
fib n =
if n <= 1
0
else
fib(n - 2) + fib(n - 1) # some cheating allowed here with brackets
Update:
Don't try to write an interpreter for the examples above. I'm only interested in the indentation problem. Another example might be parsing the following:
foo
bar = 1
baz = 2
tap
zap = 3
# should yield (ruby style hashmap):
# {:foo => { :bar => 1, :baz => 2}, :tap => { :zap => 3 } }
Pure PEG cannot parse indentation.
But peg.js can.
I did a quick-and-dirty experiment (being inspired by Ira Baxter's comment about cheating) and wrote a simple tokenizer.
For a more complete solution (a complete parser) please see this question: Parse indentation level with PEG.js
/* Initializations */
{
function start(first, tail) {
var done = [first[1]];
for (var i = 0; i < tail.length; i++) {
done = done.concat(tail[i][1][0])
done.push(tail[i][1][1]);
}
return done;
}
var depths = [0];
function indent(s) {
var depth = s.length;
if (depth == depths[0]) return [];
if (depth > depths[0]) {
depths.unshift(depth);
return ["INDENT"];
}
var dents = [];
while (depth < depths[0]) {
depths.shift();
dents.push("DEDENT");
}
if (depth != depths[0]) dents.push("BADDENT");
return dents;
}
}
/* The real grammar */
start = first:line tail:(newline line)* newline? { return start(first, tail) }
line = depth:indent s:text { return [depth, s] }
indent = s:" "* { return indent(s) }
text = c:[^\n]* { return c.join("") }
newline = "\n" {}
depths is a stack of indentations. indent() gives back an array of indentation tokens and start() unwraps the array to make the parser behave somewhat like a stream.
peg.js produces for the text:
alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
these results:
[
"alpha",
"INDENT",
"beta",
"gamma",
"INDENT",
"delta",
"DEDENT",
"DEDENT",
"epsilon",
"INDENT",
"zeta",
"DEDENT",
"BADDENT",
"eta",
"theta",
"INDENT",
"iota",
"DEDENT",
"",
""
]
This tokenizer even catches bad indents.
I think an indentation-sensitive language like that is context-sensitive. I believe PEG can only do context-free langauges.
Note that, while nalply's answer is certainly correct that PEG.js can do it via external state (ie the dreaded global variables), it can be a dangerous path to walk down (worse than the usual problems with global variables). Some rules can initially match (and then run their actions) but parent rules can fail thus causing the action run to be invalid. If external state is changed in such an action, you can end up with invalid state. This is super awful, and could lead to tremors, vomiting, and death. Some issues and solutions to this are in the comments here: https://github.com/dmajda/pegjs/issues/45
So what we are really doing here with indentation is creating something like a C-style blocks which often have their own lexical scope. If I were writing a compiler for a language like that I think I would try and have the lexer keep track of the indentation. Every time the indentation increases it could insert a '{' token. Likewise every time it decreases it could inset an '}' token. Then writing an expression grammar with explicit curly braces to represent lexical scope becomes more straight forward.
You can do this in Treetop by using semantic predicates. In this case you need a semantic predicate that detects closing a white-space indented block due to the occurrence of another line that has the same or lesser indentation. The predicate must count the indentation from the opening line, and return true (block closed) if the current line's indentation has finished at the same or shorter length. Because the closing condition is context-dependent, it must not be memoized.
Here's the example code I'm about to add to Treetop's documentation. Note that I've overridden Treetop's SyntaxNode inspect method to make it easier to visualise the result.
grammar IndentedBlocks
rule top
# Initialise the indent stack with a sentinel:
&{|s| #indents = [-1] }
nested_blocks
{
def inspect
nested_blocks.inspect
end
}
end
rule nested_blocks
(
# Do not try to extract this semantic predicate into a new rule.
# It will be memo-ized incorrectly because #indents.last will change.
!{|s|
# Peek at the following indentation:
save = index; i = _nt_indentation; index = save
# We're closing if the indentation is less or the same as our enclosing block's:
closing = i.text_value.length <= #indents.last
}
block
)*
{
def inspect
elements.map{|e| e.block.inspect}*"\n"
end
}
end
rule block
indented_line # The block's opening line
&{|s| # Push the indent level to the stack
level = s[0].indentation.text_value.length
#indents << level
true
}
nested_blocks # Parse any nested blocks
&{|s| # Pop the indent stack
# Note that under no circumstances should "nested_blocks" fail, or the stack will be mis-aligned
#indents.pop
true
}
{
def inspect
indented_line.inspect +
(nested_blocks.elements.size > 0 ? (
"\n{\n" +
nested_blocks.elements.map { |content|
content.block.inspect+"\n"
}*'' +
"}"
)
: "")
end
}
end
rule indented_line
indentation text:((!"\n" .)*) "\n"
{
def inspect
text.text_value
end
}
end
rule indentation
' '*
end
end
Here's a little test driver program so you can try it easily:
require 'polyglot'
require 'treetop'
require 'indented_blocks'
parser = IndentedBlocksParser.new
input = <<END
def foo
here is some indented text
here it's further indented
and here the same
but here it's further again
and some more like that
before going back to here
down again
back twice
and start from the beginning again
with only a small block this time
END
parse_tree = parser.parse input
p parse_tree
I know this is an old thread, but I just wanted to add some PEGjs code to the answers. This code will parse a piece of text and "nest" it into a sort of "AST-ish" structure. It only goes one deep and it looks ugly, furthermore it does not really use the return values to create the right structure but keeps an in-memory tree of your syntax and it will return that at the end. This might well become unwieldy and cause some performance issues, but at least it does what it's supposed to.
Note: Make sure you have tabs instead of spaces!
{
var indentStack = [],
rootScope = {
value: "PROGRAM",
values: [],
scopes: []
};
function addToRootScope(text) {
// Here we wiggle with the form and append the new
// scope to the rootScope.
if (!text) return;
if (indentStack.length === 0) {
rootScope.scopes.unshift({
text: text,
statements: []
});
}
else {
rootScope.scopes[0].statements.push(text);
}
}
}
/* Add some grammar */
start
= lines: (line EOL+)*
{
return rootScope;
}
line
= line: (samedent t:text { addToRootScope(t); }) &EOL
/ line: (indent t:text { addToRootScope(t); }) &EOL
/ line: (dedent t:text { addToRootScope(t); }) &EOL
/ line: [ \t]* &EOL
/ EOF
samedent
= i:[\t]* &{ return i.length === indentStack.length; }
{
console.log("s:", i.length, " level:", indentStack.length);
}
indent
= i:[\t]+ &{ return i.length > indentStack.length; }
{
indentStack.push("");
console.log("i:", i.length, " level:", indentStack.length);
}
dedent
= i:[\t]* &{ return i.length < indentStack.length; }
{
for (var j = 0; j < i.length + 1; j++) {
indentStack.pop();
}
console.log("d:", i.length + 1, " level:", indentStack.length);
}
text
= numbers: number+ { return numbers.join(""); }
/ txt: character+ { return txt.join(""); }
number
= $[0-9]
character
= $[ a-zA-Z->+]
__
= [ ]+
_
= [ ]*
EOF
= !.
EOL
= "\r\n"
/ "\n"
/ "\r"

Resources