Predictive modelling - machine-learning

How to perform regression(Random Forest,Neural Networks) for this kind of data?
The data contains features and we need to predict sales qty based on week and attributes
here I am attaching the sample data
Here we are trying to predict sales quantity based on other attributes

Multivariate linear regression
Assuming
input variables x[][] (each row corresponds to a sample, each column corresponds to a variable such as week, season, ..)
expected output y[] (as many rows as x)
parameters being learned theta[] (as many as there are input variables + 1)
you are optimizing a function h:
h = sum for all j of { x[j][i] * p[i] - y[j] } is minimal
This can easily be achieved through gradient descent.
You can also include combinations of parameters (and simply include more thetas for those pseudo-parameters)
I have some code lying around in a GitHub repository that performs basic multivariate linear regression (for a course I sometimes teach).
https://github.com/jorisschellekens/ml/tree/master/linear_regression

Related

Darts: Methods for Efficiently Predicting on a Test set (without retraining)

I am using the TFTModel. After training (and validating) using the fit method, I would like to predict all data points in the train, test and validation set using the already trained model.
Currently, there are only the methods:
historical_forcast: supports predicting for multiple time steps (with corresponding look backs) but just one time series
predict: supports predicting for multiple time series but just for n next time steps.
What I am looking for is a method like historical_forcast but where series, past_covariates, and future_covariates are supported for being predicted without retraining. My best attempt so far is to run the following code block on an already trained model:
predictions = []
for s, past_cov, future_cov in zip(series, past_covariates, future_covariates):
predictions.append(model.historical_forecasts(
s,
past_covariates=past_cov,
future_covariates=future_cov,
retrain=False,
start=model.input_chunk_length,
verbose=True
))
Where series, past_covariates, and future_covariates are lists of target time series and covariates respectively, each consisting of the concatenated train, val and test series which I split afterwards again to ensure the availability of the past values needed for predicting at the beginning of test and val.
My objection / question about this: is there a more efficient way to do this through better batching with the current interface, our would I have to call the torch model my self?

Transforming Features to increase similarity

I have a large dataset (~20,000 samples x 2,000 features-- each sample w/ a corresponding y-value) that I'm constructing a regression ML model for.
The input vectors are bitvectors with either 1s or 0s at each position.
Interestingly, I have noticed that when I 'randomly' select N samples such that their y-values are between two arbitrary values A and B (such that B-A is much smaller than the total range of values in y), the subsequent model is much better at predicting other values with the A-->B range not used in the training of the model.
However, the overall similarity of the input X vectors for these values are in no way more similar than any random selection of X values across the whole dataset.
Is there an available method to transform the input X-vectors such that those with more similar y-values are "closer" (I'm not particular the methodology, but it could be something like cosine similarity), and those with not similar y-values are separated?
After more thought, I believe this question can be re-framed as a supervised clustering problem. What might be able to accomplish this might be as simple as:
import umap
print(df.shape)
>> (23,312, 2149)
print(len(target))
>> 23,312
embedding = umap.UMAP().fit_transform(df, y=target)

How to verify if two text datasets are from different distribution?

I have two text datasets. Each dataset consists of multiple sequences and each sequence can have more than one sentence.
How do I measure if both datasets are from same distribution?
The purpose is to verify transfer learning from one distribution to another only if the difference between the distributions is statistically significant.
I am panning to use chi-square test but not sure if it will help for text data considering the high degrees of freedom.
update:
Example:
Supppose I want to train a sentiment classification model. I train a model on IMDb dataset and evaluate on IMDb and Yelp datasets. I found that my model trained on IMDb still does well on Yelp. But the question is how different these datasets are?
Train Dataset : https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format?select=Train.csv
Eval 1: https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format?select=Valid.csv
Eval 2: https://www.kaggle.com/omkarsabnis/sentiment-analysis-on-the-yelp-reviews-dataset
Now,
How different are train and eval 1?
How different are train and eval 2?
Is the dissimilarity between train and eval 2 by chance ? What is the statistical significance and p value?
The question "are text A and text B coming from the same distribution?" is somehow poorly defined. For example, these two questions (1,2) can be viewed as generated from the same distribution (distribution of all questions on StackExchange) or from different distributions (distribution of two different subdomains of StackExchange). So it's not clear what is the property that you want to test.
Anyway, you can come up with any test statistic of your choice, approximate its distribution in case of "single source" by simulation, and calculate the p-value of your test.
As a toy example, let's take two small corpora: two random articles from English Wikipedia. I'll do it in Python
import requests
from bs4 import BeautifulSoup
urls = [
'https://en.wikipedia.org/wiki/Nanjing_(Liao_dynasty)',
'https://en.wikipedia.org/wiki/United_States_Passport_Card'
]
texts = [BeautifulSoup(requests.get(u).text).find('div', {'class': 'mw-parser-output'}).text for u in urls]
Now I use a primitive tokenizer to count individual words in texts, and use root mean squared difference in word relative frequencies as my test statistic. You can use any other statistic, as long as you calculate it consistently.
import re
from collections import Counter
from copy import deepcopy
TOKEN = re.compile(r'([^\W\d]+|\d+|[^\w\s])')
counters = [Counter(re.findall(TOKEN, t)) for t in texts]
print([sum(c.values()) for c in counters])
# [5068, 4053]: texts are of approximately the same size
def word_freq_rmse(c1, c2):
result = 0
vocab = set(c1.keys()).union(set(c2.keys()))
n1, n2 = sum(c1.values()), sum(c2.values())
n = len(vocab)
for word in vocab:
result += (c1[word]/n1 - c2[word]/n2)**2 / n
return result**0.5
print(word_freq_rmse(*counters))
# rmse is 0.001178, but is this a small or large difference?
I get a value of 0.001178, but I don't know whether it's a large difference. So I need to simulate the distribution of this test statistic under the null hypothesis: when both texts are from the same distribution. To simulate it, I merge two texts into one, and then split them randomly, and calculate my statistic when comparing these two random parts.
import random
tokens = [tok for t in texts for tok in re.findall(TOKEN, t)]
split = sum(counters[0].values())
distribution = []
for i in range(1000):
random.shuffle(tokens)
c1 = Counter(tokens[:split])
c2 = Counter(tokens[split:])
distribution.append(word_freq_rmse(c1, c2))
Now I can see how unusual is the value of my observed test statistic under the null hypothesis:
observed = word_freq_rmse(*counters)
p_value = sum(x >= observed for x in distribution) / len(distribution)
print(p_value) # it is 0.0
print(observed, max(distribution), sum(distribution) / len(distribution)) # 0.0011 0.0006 0.0004
We see that when texts are from the same distribution, my test statistic is on average 0.0004 and almost never exceeds 0.0006, so the value of 0.0011 is very unusual, and the null hypothesis that two my texts originate from the same distribution should be rejected.
I wrote an article which is similar to your problem but not exactly the same.
https://towardsdatascience.com/a-new-way-to-bow-analysis-feature-engineering-part1-e012eba90ef
The problem that I was trying to solve is to check if a word has different (significant) distributions across categories or labels.
There are a few similarities between your problem and the one I had mentioned above.
You want to compare two sources of datasets, which can be taken as two different categories
Also, to compare the data sources, you will have to compare the words as sentences can't be directly compared
So, my proposed solution to this will be as:
Create words features across the two datasets using count-vectorizer and get top X words from each
Let's say you have total distinct words as N, now initialize count=0 and start to compare the distribution for each word and if the differences are significant increment the counter. Also, there could be cases where a word only exists in one of the datasets and that is a good new, by that I mean it shows that it is a distinguishing feature, so, for this also increment the count
Let's say the total count is n. Now, the lower is the n/N ratio, similar two texts are and vice-a-versa
Also, to verify this methodology - Split the data from a single source into two (random sampling) and run the above analysis, if the n/N ratio is closer to 0 which indicates that the two data sources are similar which also is the case.
Please let me know if this approach worked or not, also if you think there are any flaws in this, I would love to think and try evolving it.

How can I include survey weights in a poisson pint process model fitted to a logistic regression quadrature scheme?

Is it possible to include weights in a poisson point process model fitted to a logistic regression quadrature scheme? My data is a stratified sample and I would like to account for this sampling strategy in order to have valid population level predictions.
This is a question about the model-fitting function ppm in the R package spatstat.
Yes, you can include survey weights. The easiest way is to create a covariate surveyweight, which could be a function(x,y) or a pixel image or a column of data associated with your quadrature scheme. Then when fitting the model using ppm, add the model term +offset(log(surveyweight)).
The result of ppm will be a fitted model that describes the observed point pattern. You can do prediction, simulation etc from this model, but be aware that these will be predictions or simulations of the observed point process including the effect of non-constant survey effort.
To get a prediction or simulation of the original point process (i.e. after removing the effect of non-constant survey effort) you need to replace the original covariate surveyweight by another covariate that is constant and equal to 1, then pass this to predict.ppm in the argument newdata.
Here are a few lines to elaborate on the answer by #adrian-baddeley.
If you have the setup of your related question and we imagine you have the weights and two covariates in a data.frame in the same order as the points of your quadscheme:
library(spatstat)
X <- split(chorley)$larynx
D <- split(chorley)$lung
Q <- quadscheme.logi(X,D)
covar <- data.frame(weights = runif(npoints(chorley)),
covar1 = rnorm(npoints(chorley)),
covar2 = rnorm(npoints(chorley)))
fit <- ppm(Q ~ offset(log(weights)) + covar1 + covar2, data = covar)

How to compute probabilities instead of actual classifications on ML problems

Let's assume that we have a few data points that can be used as the training set. Each row is consisted of 4 say columns (features) that take boolean values. The 5th column expresses the class and it also takes boolean values. Here is an example (they are almost random):
1,1,1,0,1
0,1,1,0,1
1,1,0,0,1
0,0,0,0,0
1,0,0,1,0
0,0,0,0,0
Now, what I want to do is to build a model such that for any given input (new line) the system does not return the class itself (like in the case of a regular classification problem) but instead the probability this particular input belongs to class 0 or class 1. How can I do that? What's more, how can I generate a confidence interval or error rate associated with that computation?
Not all classification algorithms return probabilities, because not all of them have an underlying probabilistic model. For example, a classification tree is just a set of rules that you follow to assign each new input to a particular class.
An example of a classification algorithm that does have an underlying probabilistic model is logistic regression. In this algorithm, the probability that a particular input x is in the class is
prob = 1 / (1 + exp( -theta * x ))
where theta is a vector of coefficients with the same number of dimensions as x. Generally to move from probabilities to classifications, you simply threshold, e.g.
if prob < 0.5
return 0;
else
return 1;
end
Other classification algorithms may have probabilistic interpretations, for example random forests are essentially a voting algorithm with multiple classification trees. If 80% of the trees vote for class 1 and 20% vote for class 2, then you could output an 80% probability of being in class 1. But this is a side effect of how the model works, rather than an explicit underlying probability model.

Resources